OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22675–22683

Giant and high-resolution beam steering using slow-light waveguide amplifier

Xiaodong Gu, Toshikazu Shimada, and Fumio Koyama  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22675-22683 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel beam-steering device based on a slow-light waveguide amplifier. In this paper, we present the idea of this steering technique and show its modeling characteristics. Giant steering of the radiation beam is obtained by tuning the wavelength of input light, which is coupled into the Bragg reflector waveguide. A tunable deflection-angle range can be over 40 degrees. High beam coherency and flat intensity distribution enable us to obtain an ultra-large number of resolution-points over 1,000 for few-millimeter long devices.

© 2011 OSA

OCIS Codes
(120.5800) Instrumentation, measurement, and metrology : Scanners
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
X-ray Optics

Original Manuscript: September 19, 2011
Revised Manuscript: October 14, 2011
Manuscript Accepted: October 15, 2011
Published: October 26, 2011

Xiaodong Gu, Toshikazu Shimada, and Fumio Koyama, "Giant and high-resolution beam steering using slow-light waveguide amplifier," Opt. Express 19, 22675-22683 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Wyant, “Rotating diffraction grating laser beam scanner,” Appl. Opt. 14(5), 1057–1058 (1975). [CrossRef] [PubMed]
  2. T. Matsuda, F. Abe, and H. Takahashi, “Laser printer scanning system with a parabolic mirror,” Appl. Opt. 17(6), 878–884 (1978). [CrossRef] [PubMed]
  3. K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006). [CrossRef]
  4. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010). [CrossRef]
  5. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996). [CrossRef]
  6. F. Xiao, W. Hu, and A. Xu, “Optical phased-array beam steering controlled by wavelength,” Appl. Opt. 44(26), 5429–5433 (2005). [CrossRef] [PubMed]
  7. R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497–530 (2002). [CrossRef]
  8. E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003). [CrossRef] [PubMed]
  9. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008). [CrossRef]
  10. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007). [CrossRef] [PubMed]
  11. U. Bortolozzo1, S. Residori, and J. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photon. Rev. 4(4), 483–498 (2010). [CrossRef]
  12. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008). [CrossRef]
  13. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007). [CrossRef]
  14. E. Mizuta, H. Watanabe, and T. Baba, “All Semiconductor Low-∆ Photonic Crystal Waveguide for Semiconductor Optical Amplifier,” Jpn. J. Appl. Phys. 45(8A), 6116–6120 (2006). [CrossRef]
  15. G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, “Slow light modulator with Bragg reflector waveguide,” presented at the Optical Fiber Communications Conference, PDP34, Anaheim, California, USA, 25–29 Mar. 2007.
  16. A. Fuchida, A. Matsutani, and F. Koyama, “Slow-light total-internal-reflection switch with bending angle of 30 deg,” Opt. Lett. 36(14), 2644–2646 (2011). [CrossRef] [PubMed]
  17. T. Shimada and F. Koyama, “Lateral Integration of VCSEL with Slow Light Amplifier/Modulator,” in Proceedings of IEEE Photonics Society, 2010 23rd Annual Meeting, (Institute of Electrical and Electronics Engineers, Denver, 2010), 244–245.
  18. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg Fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978). [CrossRef]
  19. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996). [CrossRef] [PubMed]
  20. G. Hirano and F. Koyama, “Slowing light in Bragg reflector waveguide with tilt coupling scheme,” presented at 20th Annual Meeting of The IEEE Laser and Electro-Optical Society, LEOS2007, MK1, Florida, U.S.A., 21–25 Oct. 2007.
  21. A. S. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Pure Appl. Opt. 2(3), 211–233 (1993). [CrossRef]
  22. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience,1995), Chap. 4.
  23. S. Y. Hu, S. W. Corzine, K. K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479 (1994). [CrossRef]
  24. W. Zhao, Z. Hu, V. Lal, L. Rau, and D. J. Blumenthal, “Optimization of Ultra-long MQW Semiconductor Optical Amplifiers for All-optical 40-Gb/s Wavelength Conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CWK5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-CWK5 .
  25. C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997). [CrossRef]
  26. C. J. Chang-Hasnain, “Tunable VCSELs,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited