OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22723–22730

A high-speed tunable beam splitter for feed-forward photonic quantum information processing

Xiao-song Ma, Stefan Zotter, Nuray Tetik, Angie Qarry, Thomas Jennewein, and Anton Zeilinger  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22723-22730 (2011)
http://dx.doi.org/10.1364/OE.19.022723


View Full Text Article

Enhanced HTML    Acrobat PDF (762 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We realize quantum gates for path qubits with a high-speed, polarization-independent and tunable beam splitter. Two electro-optical modulators act in a Mach-Zehnder interferometer as high-speed phase shifters and rapidly tune its splitting ratio. We test its performance with heralded single photons, observing a polarization-independent interference contrast above 95%. The switching time is about 5.6 ns, and a maximal repetition rate is 2.5 MHz. We demonstrate tunable feed-forward operations of a single-qubit gate of path-encoded qubits and a two-qubit gate via measurement-induced interaction between two photons.

© 2011 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: August 8, 2011
Revised Manuscript: September 8, 2011
Manuscript Accepted: September 8, 2011
Published: October 26, 2011

Citation
Xiao-song Ma, Stefan Zotter, Nuray Tetik, Angie Qarry, Thomas Jennewein, and Anton Zeilinger, "A high-speed tunable beam splitter for feed-forward photonic quantum information processing," Opt. Express 19, 22723-22730 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22723


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum crytography,” Rev. Mod. Phys.74, 145–195 (2002). [CrossRef]
  2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys.79, 135–174 (2007). [CrossRef]
  3. V. Scarani, H. Bechmann-Pasquinucci, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81, 1301–1350 (2009). [CrossRef]
  4. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature464, 45–53 (2010). [CrossRef] [PubMed]
  5. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett.73, 58–61 (1994). [CrossRef] [PubMed]
  6. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987). [CrossRef] [PubMed]
  7. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense Coding in Experimental Quantum Communication,” Phys. Rev. Lett.76, 4656–4659 (1994). [CrossRef]
  8. D. Bouwmeester, J. W. Pan, K. Mattle, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997). [CrossRef]
  9. J. W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett.80, 3891–3894 (1998). [CrossRef]
  10. T. Jennewein, G. Weihs, J. W. Pan, and A. Zeilinger, “Experimental nonlocality proof of quantum teleportation and entanglement swapping,” Phys. Rev. Lett.88, 017903 (2002). [CrossRef] [PubMed]
  11. J. W. Pan, Z. B. Chen, M. Żukowski, H. Weinfurter, and A. Zeilinger, “Multi-photon entanglement and interferometry,” arXiv:0805.2853 (2008).
  12. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef] [PubMed]
  13. R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett.86, 5188–5191 (2001). [CrossRef] [PubMed]
  14. R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, and A. Zeilinger, “High-speed linear optics quantum computing using active feed-forward,” Nature445, 65–69 (2007). [CrossRef] [PubMed]
  15. B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature450, 393–396 (2007). [CrossRef] [PubMed]
  16. B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White, “Towards quantum chemistry on a quantum computer,” Nat. Chem.2, 106–1112010. [CrossRef] [PubMed]
  17. X. S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys.(2011). [CrossRef]
  18. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A66, 053805 (2002). [CrossRef]
  19. J. H. Shapiro and F. N. Wong, “On-demand single-photon generation using a modular array of parametric down-converters with electro-optic polarization controls,” Opt. Lett.32, 2698–2700 (2007). [CrossRef] [PubMed]
  20. X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A83, 043814 (2011). [CrossRef]
  21. L. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng.40, 1165–1178 (2001). [CrossRef]
  22. N. Spagnolo, C. Vitelli, S. Giacomini, F. Sciarrino, and F. D. Martini, “Polarization preserving ultra fast optical shutter for quantum information processing,” Opt. Express16, 17609–17615 (2008). [CrossRef] [PubMed]
  23. T. T. Ng, D. Gosal, A. Lamas-Linares, and C. Kurtsiefer, “Sagnac-loop phase shifter with polarization-independent operation,” Rev. Sci. Instrum.82, 013106 (2011). [CrossRef] [PubMed]
  24. M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett.106, 053901 (2011). [CrossRef] [PubMed]
  25. http://www.leysop.com/ .
  26. P. Böhi, R. Prevedel, T. Jennewein, A. Stefanov, F. Tiefenbacher, and A. Zeilinger, “Implementation and characterization of active feed-forward for deterministic linear optics quantum computing,” Appl. Phys. B89, 499–505 (2007). [CrossRef]
  27. R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett.96, 2405022006. [CrossRef] [PubMed]
  28. M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, and H. Zbinden, “Entangling independent photons by time measurement,” Nat. Phys.3, 692–695 (2007). [CrossRef]
  29. N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in bell-state analysis,” Phys. Rev. Lett.95, 2105042005. [CrossRef] [PubMed]
  30. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95, 2105052005. [CrossRef] [PubMed]
  31. R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett.95, 2105062005. [CrossRef] [PubMed]
  32. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320, 646–649 (2008). [CrossRef] [PubMed]
  33. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics3, 346–350 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited