OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22731–22742

Unidirectional broadband radiation of honeycomb plasmonic antenna array with broken symmetry

Rüştü Umut Tok, Cleva Ow-Yang, and Kürşat Şendur  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22731-22742 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2238 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Emerging plasmonic and photovoltaic applications benefit from effective interaction between optical antennas and unidirectional incident light over a wide spectrum. Here, we propose a honeycomb array of plasmonic nanoantennas with broken symmetry to obtain a unidirectional radiation pattern over a wide spectrum. The honeycomb nanoantenna array is based on a hexagonal grid with periodically arranged nanostructure building blocks. To analyze the far-field optical distribution and spectral behavior of the plasmonic antenna honeycomb, a two-dimensional Wigner-Seitz unit cell is used together with periodic boundary conditions. As a result of the vectoral superposition of the fields produced by the Wigner-Seitz unit cells, far-zone optical fields interfere constructively or destructively in different directions. The constructive interference along the array’s normal direction engenders unidirectional radiation. Due to the broken symmetry of the Wigner-Seitz cell, multiple resonances are supported by the plasmonic antenna honeycomb array over a broad spectrum.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: August 9, 2011
Revised Manuscript: September 26, 2011
Manuscript Accepted: October 14, 2011
Published: October 26, 2011

Rüştü Umut Tok, Cleva Ow-Yang, and Kürşat Şendur, "Unidirectional broadband radiation of honeycomb plasmonic antenna array with broken symmetry," Opt. Express 19, 22731-22742 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011). [CrossRef]
  3. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003). [CrossRef] [PubMed]
  4. H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  5. L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures,” J. Microsc. 229, 483–489 (2008). [CrossRef] [PubMed]
  6. C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94, 171106 (2009). [CrossRef]
  7. K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005). [CrossRef] [PubMed]
  8. X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6, 199 (2011). [CrossRef] [PubMed]
  9. K. A. Willets and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007). [CrossRef]
  10. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007). [CrossRef] [PubMed]
  11. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011). [CrossRef] [PubMed]
  12. D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energ-T ASME 132, 011014 (2010). [CrossRef]
  13. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008). [CrossRef] [PubMed]
  14. T. Shegai, V. D. Miljkovi, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011). [CrossRef] [PubMed]
  15. Y. G. Liu, Y. Li, and W. E. I. Sha, “Directional far-field response of a spherical nanoantenna,” Opt. Lett. 36, 2146–2148 (2011). [CrossRef] [PubMed]
  16. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef] [PubMed]
  17. N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010). [CrossRef]
  18. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010). [CrossRef]
  19. G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009). [CrossRef] [PubMed]
  20. A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Lett. 11, 1800–1803 (2011). [CrossRef] [PubMed]
  21. B. Liu, D. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express 19, 10049–10056 (2011). [CrossRef] [PubMed]
  22. D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19, 2148–2157 (2011). [CrossRef] [PubMed]
  23. X. Liu and A. Alù, “Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B 82, 144305 (2010). [CrossRef]
  24. A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivsha, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011). [CrossRef]
  25. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11, 2400–2406 (2011). [CrossRef] [PubMed]
  26. A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett. 11, 3694–3700 (2011). [CrossRef] [PubMed]
  27. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008). [CrossRef] [PubMed]
  28. E. S. Unlu, R. U. Tok, and K. Sendur, “Broadband plasmonic nanoantenna with an adjustable spectral response,” Opt. Express 19, 1000–1006 (2011). [CrossRef] [PubMed]
  29. S. V. Boriskina and L. D. Negro, “Multiple-wavelength plasmonic nanoantennas,” Opt. Lett. 35, 538–540 (2010). [CrossRef] [PubMed]
  30. C. Kittel, Introduction to solid state physics (Wiley, New York, NY, 2005).
  31. K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004). [CrossRef]
  32. J. A. Kong, Electromagnetic wave theory (Wiley, New York, NY, 1990).
  33. C. A. Balanis, Advanced engineering electromagnetics (Wiley, New York, NY, 1989).
  34. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (Wiley, New York, NY, 2007).
  35. E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, NY, 1998).
  36. R. E. Collin, Antennas and radiowave propagation (McGraw Hill, New York, NY, 1985).
  37. C. A. Balanis, Antenna theory analysis and design (Wiley, New York, NY, 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited