OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22743–22754

Single nanohole and photonic crystal: wavelength selective enhanced transmission of light

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22743-22754 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1428 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the first time we have demonstrated an approach to control transmission of light through a single nanohole with the use of photon crystal microcavity. By use of the approach 28-fold enhanced transmission of light through a single nanohole in Au film has been experimentally demonstrated. The approach has the following advantages: (1) it enables to considerably increase transmission of light through a single nanohole, (2) the increase in transmission is unaffected by the hole diameter, (3) the transmission of nanohole is selective in frequency, the width of the resonance ~λ/90, (4) no auxiliary structures are necessary on the surface of the Au film (extra nanoholes, grooves, etc.).

© 2011 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(310.4165) Thin films : Multilayer design
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Diffraction and Gratings

Original Manuscript: August 16, 2011
Revised Manuscript: September 28, 2011
Manuscript Accepted: September 29, 2011
Published: October 26, 2011

P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, "Single nanohole and photonic crystal: wavelength selective enhanced transmission of light," Opt. Express 19, 22743-22754 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Wieman, D. Pritchard, and D. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71(2), S253–S262 (1999). [CrossRef]
  2. V. I. Balykin, “Atom optics and nanotechnology,” Phys. Usp. 52(3), 1 (2009). [CrossRef]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub- wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  4. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010). [CrossRef]
  5. E. Moreno, A. I. Fernández-Domínguez, J. I. Cirac, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of cold atoms through subwavelength apertures,” Phys. Rev. Lett. 95(17), 170406 (2005). [CrossRef] [PubMed]
  6. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  7. C. J. Bouwkamp, Diffraction theory, (London: Physical Society 1954).
  8. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007). [CrossRef]
  9. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001). [CrossRef]
  10. F. Kalkum, M. Peter, G. Barbastathis, and K. Buse, “External-resonance-enhanced transmission of light through sub-wavelength holes,” Appl. Phys. B 100(1), 169–172 (2010). [CrossRef]
  11. E. Popov and N. Bonod, “Physics of extraordinary transmission through subwavelength hole arrays,” in Structured surfaces as optical metamaterials, A. A. Maradudin ed., (Cambridge: Cambridge University Press 2011), pp. 1–27.
  12. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  13. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  14. C. M. Kuznetzova and M. A. Okatova, Handbook of Optics – Technologist (Mashinostroenie Leningradskoe otdelenie 1983) (in russian).
  15. M. Born and E. Wolf, Principles of Optics (Pergamon 1970).
  16. P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology 20(23), 235301 (2009). [CrossRef] [PubMed]
  17. D. P. Adams, M. J. Vasile, V. Hodges, and N. Patterson, “Focused ion beam fabrication of nanopores in metal and dielectric membranes,” Microsc. Microanal. 13(S02), 1512–1513 (2007). [CrossRef]
  18. D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010). [CrossRef]
  19. D. W. Pashley, M. J. Stowell, M. H. Jacobs, and T. J. Law, “The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope,” Philos. Mag. 10(103), 127–158 (1964). [CrossRef]
  20. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84(12), 2040 (2004). [CrossRef]
  21. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  22. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004). [CrossRef] [PubMed]
  23. P. N. Melentiev, A. E. Afanasiev, V. V. Klimov, V. I. Balykin, A. A. Kuzin, and A. V. Zablotskiy, A. S. Baturin are preparing a manuscript to be called “Polarization sensitive transmission of a single nanohole embedded in a photonic crystal nanocavity”.
  24. V. I. Balykin, V. V. Klimov, and V. S. Letokhov, “Atom nanooptics,” in Handbook of Theoretical and Computational Nanotechnology, M. Rieth M., W. Schommers eds., (Elsevier 2006), pp. 1–78.
  25. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002). [CrossRef] [PubMed]
  26. J. Vučković, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000). [CrossRef]
  27. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003). [CrossRef] [PubMed]
  28. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited