OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22775–22785

Exact polarizability and plasmon resonances of partly buried nanowires

Jesper Jung and Thomas G. Pedersen  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22775-22785 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1703 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The electrostatic polarizability for both vertical and horizontal polarization of two conjoined half-cylinders partly buried in a substrate is derived in an analytical closed-form expression. Using the derived analytical polarizabilities we analyze the localized surface plasmon resonances of three important metal nanowire configurations: (1) a half-cylinder, (2) a half-cylinder on a substrate, and (3) a cylinder partly buried in a substrate. Among other results we show that the substrate plays an important role for spectral location of the plasmon resonances. Our analytical results enable an easy, fast, and exact analysis of many complicated plasmonic nanowire configurations including nanowires on substrates. This is important both for comparison with experimental data, for applications, and as benchmarks for numerical methods.

© 2011 OSA

OCIS Codes
(000.3860) General : Mathematical methods in physics
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Jesper Jung and Thomas G. Pedersen, "Exact polarizability and plasmon resonances of partly buried nanowires," Opt. Express 19, 22775-22785 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Faraday, “Experimental relations of gold (and other metals) to light,” Phil. Trans. R. Soc. Lond. 147, 145–181 (1857). [CrossRef]
  2. J. W. Strutt (Lord Rayleigh), “On the scattering of light by small particles,” Phil. Mag. 41, 447–454 (1871).
  3. L. Lorenz, “Lysbevægelsen i og udenfor en af plane lysbølger belyst kugle,” K. Dan. Vidensk. Selsk. Skr. 6, 1–62 (1890).
  4. G. Mie, “Beitrage zur Optik truber Medien speziell kolloidaler Metallosungen,” Ann. Phys. 330, 337–445 (1908). [CrossRef]
  5. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  6. L. Rayleigh, “The dispersal of light by a dielectric cylinder,” Phil. Mag. 36, 365–376 (1918).
  7. J. R. Wait, “Scattering of a plane wave from a circular cylinder at oblique incidence,” Can. J. Phys. 33, 189–195 (1955). [CrossRef]
  8. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 2000).
  9. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  10. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003). [CrossRef]
  11. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  12. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007). [CrossRef]
  13. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007). [CrossRef]
  14. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef] [PubMed]
  15. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  16. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plamon polaritons in solar cells,” Phys. Stat. Sol. (a) 12, 2844–2861 (2008). [CrossRef]
  17. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  18. P. C. Waterman, “Surface fields and the T matrix,” J. Opt. Soc. Am. A 16, 2968–2977 (1999). [CrossRef]
  19. A. V. Radchik, A. V. Paley, G. B. Smith, and A. V. Vagov, “Polarization and resonant absorption in intersecting cylinders and spheres,” J. Appl. Phys. 76, 4827–4835 (1994). [CrossRef]
  20. A. Salandrino, A. Alu, and N. Engheta, “Parallel, series, and intermediate interconnects of optical nanocircuit elements. 1. Analytical solution,” J. Opt. Soc. Am. B 24, 3007–3013 (2007). [CrossRef]
  21. M Pitkonen, “A closed-form solution for the polarizability of a dielectric double half-cylinder,” J. Electromagn. Waves Appl. 24, 1267–1277 (2010). [CrossRef]
  22. H. Kettunen, H. Wallen, and A. Sihvola, “Polarizability of a dielectic hemisphere,” J. Appl. Phys. 102, 044105 (2007). [CrossRef]
  23. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II (McGraw-Hill Book Company Inc., 1953).
  24. H. E. Lockwood, A Book of Curves (Cambridge University Press, 1963).
  25. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  26. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited