OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22786–22796

Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization

Kyoko Masui, Satoru Shoji, Kenji Asaba, Thomas C. Rodgers, Feng Jin, Xuan-Ming Duan, and Satoshi Kawata  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22786-22796 (2011)
http://dx.doi.org/10.1364/OE.19.022786


View Full Text Article

Enhanced HTML    Acrobat PDF (2239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate fabrication of Au nanorod aggregates microstructures by means of a femtosecond near-infrared laser. The laser light was tightly focused into colloidal Au nanorods dispersed in photopolymerizable metyl-methacrylate (MMA) compound to induce two-photon polymerization (TPP). TPP of MMA glued the nanorods together to form solid microstrucures of aggregates. The laser light excited a local surface plasmon, resulting in confinement of TPP in the vicinity of nanorods. Concurrenly occurring optical accumulation of nanorods created a unique mechanism for the formation of nanorod aggregates into desired microstructures. This technique would be a clue for a novel micro/nanofabrication method for plasmonic materials and devices.

© 2011 OSA

OCIS Codes
(160.3900) Materials : Metals
(160.5470) Materials : Polymers
(190.4180) Nonlinear optics : Multiphoton processes
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Laser Microfabrication

History
Original Manuscript: July 29, 2011
Revised Manuscript: August 25, 2011
Manuscript Accepted: August 25, 2011
Published: October 26, 2011

Citation
Kyoko Masui, Satoru Shoji, Kenji Asaba, Thomas C. Rodgers, Feng Jin, Xuan-Ming Duan, and Satoshi Kawata, "Laser fabrication of Au nanorod aggregates microstructures assisted by two-photon polymerization," Opt. Express 19, 22786-22796 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. (Deerfield Beach Fla.)21(48), 4880–4910 (2009). [CrossRef]
  2. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  3. K. Liu, Z. Nie, N. Zhao, W. Li, M. Rubinstein, and E. Kumacheva, “Step-growth polymerization of inorganic nanoparticles,” Science329(5988), 197–200 (2010). [CrossRef] [PubMed]
  4. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67(20), 205402 (2003). [CrossRef]
  5. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics2(7), 438–442 (2008). [CrossRef]
  6. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express18(20), 21198–21203 (2010). [CrossRef] [PubMed]
  7. B. Nikoobakht, Z. L. Wang, and M. A. El-Sayed, “Self-assembly of gold nanorods,” J. Phys. Chem. B104(36), 8635–8640 (2000). [CrossRef]
  8. S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett.80(3), 482–484 (2002). [CrossRef]
  9. M. J. Guffey and N. F. Scherer, “All-optical patterning of Au nanoparticles on surfaces using optical traps,” Nano Lett.10(11), 4302–4308 (2010). [CrossRef] [PubMed]
  10. A. S. Urban, A. A. Lutich, F. D. Stefani, and J. Feldmann, “Laser printing single gold nanoparticles,” Nano Lett.10(12), 4794–4798 (2010). [CrossRef] [PubMed]
  11. A. M. Hung, C. M. Micheel, L. D. Bozano, L. W. Osterbur, G. M. Wallraff, and J. N. Cha, “Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami,” Nat. Nanotechnol.5(2), 121–126 (2010). [CrossRef] [PubMed]
  12. J. Sharma, R. Chhabra, Y. Liu, Y. Ke, and H. Yan, “DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays,” Angew. Chem. Int. Ed. Engl.45(5), 730–735 (2006). [CrossRef] [PubMed]
  13. S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B112(12), 3586–3589 (2008). [CrossRef] [PubMed]
  14. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature412(6848), 697–698 (2001). [CrossRef] [PubMed]
  15. W. S. Kuo, C. H. Lien, K. C. Cho, C. Y. Chang, C. Y. Lin, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Multiphoton fabrication of freeform polymer microstructures with gold nanorods,” Opt. Express18(26), 27550–27559 (2010). [CrossRef] [PubMed]
  16. C. H. Lien, W. S. Kuo, K. C. Cho, C. Y. Lin, Y. D. Su, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S. J. Chen, “Fabrication of gold nanorods-doped, bovine serum albumin microstructures via multiphoton excited photochemistry,” Opt. Express19(7), 6260–6268 (2011). [CrossRef] [PubMed]
  17. N. R. Jana, L. Gearheart, and C. J. Murphy, “Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,” Adv. Mater. (Deerfield Beach Fla.)13(18), 1389–1393 (2001). [CrossRef]
  18. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater.15(10), 1957–1962 (2003). [CrossRef]
  19. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release114(3), 343–347 (2006). [CrossRef] [PubMed]
  20. J. Yang, J. C. Wu, Y. C. Wu, J. K. Wang, and C. C. Chen, “Organic solvent dependence of plasma resonance of gold nanorods: a simple relationship,” Chem. Phys. Lett.416(4-6), 215–219 (2005). [CrossRef]
  21. J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev.249(17-18), 1870–1901 (2005). [CrossRef]
  22. Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima, and Y. Niidome, “Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces,” Langmuir24(20), 12026–12031 (2008). [CrossRef] [PubMed]
  23. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B104(26), 6152–6163 (2000). [CrossRef]
  24. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009). [CrossRef] [PubMed]
  25. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett.6(3), 355–360 (2006). [CrossRef] [PubMed]
  26. N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, and H. Misawa, “Spatially selective nonlinear photopolymerization induced by the near-field of surface plasmons localized on rectangular gold nanorods,” J. Phys. Chem. C113(4), 1147–1149 (2009). [CrossRef]
  27. S. Nah, L. Li, R. Liu, J. Hao, S. B. Lee, and J. T. Fourkas, “Metal-enhanced multiphoton absorption polymerization with gold nanowires,” J. Phys. Chem. C114(17), 7774–7779 (2010). [CrossRef]
  28. H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett.83(6), 1104–1106 (2003). [CrossRef]
  29. S. Kawata and H.-B. Sun, “Two-photon photopolymerization as a tool for making micro-devices,” Appl. Surf. Sci.208–209, 153–158 (2003). [CrossRef]
  30. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  31. M. Pelton, M. Z. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett.31(13), 2075–2077 (2006). [CrossRef] [PubMed]
  32. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett.8(9), 2998–3003 (2008). [CrossRef] [PubMed]
  33. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater.5(2), 97–101 (2006). [CrossRef] [PubMed]
  34. J. Zhang, H. I. Kim, C. H. Oh, X. Sun, and H. Lee, “Multidimensional manipulation of carbon nanotube bundles with optical tweezers,” Appl. Phys. Lett.88(5), 053123 (2006). [CrossRef]
  35. J. Junio, S. Park, M. W. Kim, and H. D. Ou-Yang, “Optical bottles: A quantitative analysis of optically confined nanoparticle ensembles in suspension,” Solid State Commun.150(21-22), 1003–1008 (2010). [CrossRef]
  36. P. R. Evans, G. A. Wurtz, R. Atkinson, W. Hendren, D. O’Connor, W. Dickson, R. J. Pollard, and A. V. Zayats, “Plasmonic core/shell nanorod arrays: subattoliter controlled geometry and tunable optical properties,” J. Phys. Chem. C111(34), 12522–12527 (2007). [CrossRef]
  37. L. Shao, K. C. Woo, H. Chen, Z. Jin, J. Wang, and H. Q. Lin, “Angle- and energy-resolved plasmon coupling in gold nanorod dimers,” ACS Nano4(6), 3053–3062 (2010). [CrossRef] [PubMed]
  38. K. Ueno, S. Takabatake, K. Onishi, H. Itoh, Y. Nishijima, and H. Misawa, “Homogeneous nano-patterning using plasmon-assisted photolithography,” Appl. Phys. Lett.99(1), 011107 (2011). [CrossRef]
  39. K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanogap-assisted surface plasmon nanolithography,” J. Phys. Chem. Lett.1(3), 657–662 (2010). [CrossRef]
  40. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C113(27), 11720–11724 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited