OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22882–22891

Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference

Se-Hyuk Yeom, Ok-Geun Kim, Byoung-Ho Kang, Kyu-Jin Kim, Heng Yuan, Dae-Hyuk Kwon, Hak-Rin Kim, and Shin-Won Kang  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22882-22891 (2011)
http://dx.doi.org/10.1364/OE.19.022882


View Full Text Article

Enhanced HTML    Acrobat PDF (3959 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time.

© 2011 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Sensors

History
Original Manuscript: August 1, 2011
Revised Manuscript: October 5, 2011
Manuscript Accepted: October 6, 2011
Published: October 27, 2011

Citation
Se-Hyuk Yeom, Ok-Geun Kim, Byoung-Ho Kang, Kyu-Jin Kim, Heng Yuan, Dae-Hyuk Kwon, Hak-Rin Kim, and Shin-Won Kang, "Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference," Opt. Express 19, 22882-22891 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22882


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  2. A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, “A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs,” Biosens. Bioelectron.19(2), 131–135 (2003). [CrossRef] [PubMed]
  3. B. D. Malhotra and A. Chaubey, “Biosensors for clinical diagnostics industry,” Sens. Actuators B Chem.91(1-3), 117–127 (2003). [CrossRef]
  4. N. Eum, S. Yeum, D. Kwon, H. Kim, and S. Kang, “Enhancement of sensitivity using gold nanorods—Antibody conjugator for detection of E. coli O157:H7,” Sens. Actuators B Chem.143(2), 784–788 (2010). [CrossRef]
  5. T. Gao, J. Lu, and L. J. Rothberg, “Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry,” Anal. Chem.78(18), 6622–6627 (2006). [CrossRef] [PubMed]
  6. S. R. Horner, C. R. Mace, L. J. Rothberg, and B. L. Miller, “A proteomic biosensor for enteropathogenic E. coli,” Biosens. Bioelectron.21(8), 1659–1663 (2006). [CrossRef] [PubMed]
  7. F. S. Ligler, M. Breimer, J. P. Golden, D. A. Nivens, J. P. Dodson, T. M. Green, D. P. Haders, and O. A. Sadik, “Integrating waveguide biosensor,” Anal. Chem.74(3), 713–719 (2002). [CrossRef] [PubMed]
  8. V. S. Lin, K. Motesharei, K. P. Dancil, M. J. Sailor, and M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science278(5339), 840–843 (1997). [CrossRef] [PubMed]
  9. D. R. Turner, “Electropolishing Silicon in Hydrofluoric Acid Solutions,” J. Electrochem. Soc.105(7), 402–408 (1958). [CrossRef]
  10. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990). [CrossRef]
  11. J. Lahiri, L. Isaacs, J. Tien, and G. M. Whitesides, “A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: a surface plasmon resonance study,” Anal. Chem.71(4), 777–790 (1999). [CrossRef] [PubMed]
  12. R. Nakamura, H. Muguruma, K. Ikebukuro, S. Sasaki, R. Nagata, I. Karube, and H. Pedersen, “A Plasma-Polymerized Film for Surface Plasmon Resonance Immunosensing,” Anal. Chem.69(22), 4649–4652 (1997). [CrossRef]
  13. E. Kai, S. Sawata, K. Ikebukuro, T. Iida, T. Honda, and I. Karube, “Detection of PCR products in solution using surface plasmon resonance,” Anal. Chem.71(4), 796–800 (1999). [CrossRef] [PubMed]
  14. D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem.79(5), 1855–1864 (2007). [CrossRef] [PubMed]
  15. P. Pattnaik, “Surface plasmon resonance: applications in understanding receptor-ligand interaction,” Appl. Biochem. Biotechnol.126(2), 79–92 (2005). [CrossRef] [PubMed]
  16. J. C. Cabrera-Abreu, P. Davies, Z. Matek, and M. S. Murphy, “Performance of blood tests in diagnosis of inflammatory bowel disease in a specialist clinic,” Arch. Dis. Child.89(1), 69–71 (2004). [PubMed]
  17. T. P. Erlinger, E. A. Platz, N. Rifai, and K. J. Helzlsouer, “C-reactive protein and the risk of incident colorectal cancer,” JAMA291(5), 585–590 (2004). [CrossRef] [PubMed]
  18. F. H. Epstein and R. Ross, “Atherosclerosis--an inflammatory disease,” N. Engl. J. Med.340(2), 115–126 (1999). [CrossRef] [PubMed]
  19. D. K. KIM, K. Kerman, S. Yamamura, Y. S. Kwon, Y. Takamura, and E. Tamiya, “Label-Free Optical Detection of Protein Antibody–Antigen Interaction on Au Capped Porous Anodic Alumina Layer Chip,” Jpn. J. Appl. Phys.47(2), 1351–1354 (2008). [CrossRef]
  20. T. Endo, K. Kerman, N. Nagatani, H. M. Hiepa, D. K. Kim, Y. Yonezawa, K. Nakano, and E. Tamiya, “Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip,” Anal. Chem.78(18), 6465–6475 (2006). [CrossRef] [PubMed]
  21. B. B. Rossi, Optics (Addison Wesley, 1957).
  22. K. Huang, Y. Li, Z. Wu, C. Li, H. Lai, and J. Y. Kang, “Asymmetric light reflectance effect in AAO on glass,” Opt. Express19(2), 1301–1309 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-2-1301 . [CrossRef] [PubMed]
  23. A. V. Whitney, J. W. Elam, S. Zou, A. V. Zinovev, P. C. Stair, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition,” J. Phys. Chem. B109(43), 20522–20528 (2005). [CrossRef] [PubMed]
  24. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. G¨osele, “Self-ordering Regimes of Porous Alumina: The 10% Porosity Rule,” Nano Lett.2(7), 677–680 (2002). [CrossRef]
  25. V. P. Parkhutik and V. I. Shershulsky, “Theoretical modelling of porous oxide growth on aluminium,” Appl. Phys. (Berl.)25, 1258–1263 (1992).
  26. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995). [CrossRef] [PubMed]
  27. H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, “Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer,” ACS Nano4(6), 3139–3146 (2010). [CrossRef] [PubMed]
  28. N. K. Chaki, M. Aslam, J. Sharma, and K. Vijayamohanan, “Applications of self-assembled monolayers in materials chemistry,” Proc. Indian Acad. Sci. (Chem. Sci.)113, 659–670 (2001).
  29. K. Onuma, A. Oyane, T. Kokubo, G. Treboux, N. Kanzaki, and A. Ito, “Nucleation of Calcium Phosphate on 11-Mercaptoundecanoic Acid Self-assembled Monolayer in a Pseudophysiological Solution,” J. Phys. Chem. B104(50), 11950–11956 (2000). [CrossRef]
  30. S. Kim, N. Cheng, J. R. Jeong, S. G. Jang, S. M. Yang, and W. T. S. Huck, “Localized surface plasmon resonance (LSPR) sensitivity of Au nanodot patterns to probe solvation effects in polyelectrolyte brushes,” Chem. Commun. (Camb.)31(31), 3666–3668 (2008). [CrossRef] [PubMed]
  31. X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett.98(9), 093701 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited