OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22936–22941

Multicore fiber for cold-atomic cloud monitoring

Jean-François Clément, Denis Bacquet, Alexandre Kudlinski, Géraud Bouwmans, Olivier Soppera, Jean Claude Garreau, and Pascal Szriftgiser  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 22936-22941 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1062 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thanks to an all solid core photonic crystal fiber (PCF) used as a multicore fiber, we propose and experimentally demonstrate what is to our knowledge a new optical detection scheme for the spontaneous emission collection of cold atoms. A Magneto-Optical Trap (MOT) is placed in front of a polished PCF end-face. As they display a higher optical index than the surrounding cladding silica, the 108 rods (equivalent to a 108 pixels camera) of this PCF are light guiding and behave like an array of detectors. Both global and local properties of the trapped atoms are probed. A MOT lifetime is reported. We also take advantage of the multi-core geometry for a real time detection of the center-of-mass motion of the atomic cloud.

© 2011 OSA

OCIS Codes
(000.2170) General : Equipment and techniques
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(110.2350) Imaging systems : Fiber optics imaging
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

Original Manuscript: September 8, 2011
Revised Manuscript: October 6, 2011
Manuscript Accepted: October 17, 2011
Published: October 27, 2011

Jean-François Clément, Denis Bacquet, Alexandre Kudlinski, Géraud Bouwmans, Olivier Soppera, Jean Claude Garreau, and Pascal Szriftgiser, "Multicore fiber for cold-atomic cloud monitoring," Opt. Express 19, 22936-22941 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Heine, M. Wilzbach, T. Raub, B. Hessmo, and J. Schmiedmayer, “Integrated atom detector: Single atoms and photon statistics,” Phys. Rev. A79, 021804R (2009).
  2. M. Kohnen, M. Succo, P. G. Petrov, R. A. Nyman, M. Trupke, and E. A. Hinds, “An array of integrated atom–photon junctions,” Nat. Phys. 5(1), 35–38 (2011). [CrossRef]
  3. P. Quinto-Su, M. Tscherneck, M. Holmes, and N. Bigelow, “On-chip optical detection of laser cooled atoms,” Opt. Express 12(21), 5098–5103 (2004). [CrossRef] [PubMed]
  4. A. Takamizawa, T. Steinmetz, R. Delhuille, T. W. Hänsch, and J. Reichel, “Miniature fluorescence detector for single atom observation on a microchip,” Opt. Express 14(23), 10976–10983 (2006). [CrossRef] [PubMed]
  5. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104(20), 203603 (2010). [CrossRef] [PubMed]
  6. S. M. Hendrickson, M. M. Lai, T. B. Pittman, and J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010). [CrossRef] [PubMed]
  7. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009). [CrossRef] [PubMed]
  8. M. Bajcsy, S. Hofferberth, T. Peyronel, V. Balic, Q. Liang, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Laser-cooled atoms inside a hollow-core photonic-crystal fiber,” Phys. Rev. A 83(6), 063830 (2011). [CrossRef]
  9. P. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  10. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm,” Opt. Express 13(21), 8452–8459 (2005). [CrossRef] [PubMed]
  11. R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11(14), 1709–1713 (2003). [CrossRef] [PubMed]
  12. F. Mihélic, D. Bacquet, J. Zemmouri, and P. Szriftgiser, “Ultrahigh resolution spectral analysis based on a Brillouin fiber laser,” Opt. Lett. 35(3), 432–434 (2010). [CrossRef] [PubMed]
  13. J.-F. Clément, D. Bacquet, and P. Szriftgiser, “Ultraviolet curing adhesive-based optical fiber feedthrough for ultrahigh vacuum systems,” J. Vac. Sci. Technol. A 28(4), 627–628 (2010). [CrossRef]
  14. J.-F. Clément, T. Vitse, and P. Szriftgiser, “Microstructured optical fiber UHV integration for cold-atom experiments,” J. Vac. Sci. Technol. A 28(6), 1421–1422 (2010). [CrossRef]
  15. O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters” J. Polym. Sci Part A: Polym. Chem. 46(11), 3783–3794 (2008). [CrossRef]
  16. G. Lemarié, J. Chabé, P. Szriftgiser, J. C. Garreau, B. Grémaud, and D. Delande, “Observation of the Anderson metal-insulator transition with atomic matter waves: Theory and experiment,” Phys. Rev. A 80(4), 043626 (2009). [CrossRef]
  17. G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, and J. C. Garreau, “Critical state of the Anderson transition: between a metal and an insulator,” Phys. Rev. Lett. 105(9), 090601 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (1601 KB)     
» Media 2: AVI (2212 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited