OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22942–22949

Exchange of electric and magnetic resonances in multilayered metal/dielectric nanoplates

De Li, Ling Qin, Xiang Xiong, Ru-Wen Peng, Qing Hu, Guo-Bin Ma, Hao-Shen Zhou, and Mu Wang  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22942-22949 (2011)
http://dx.doi.org/10.1364/OE.19.022942


View Full Text Article

Enhanced HTML    Acrobat PDF (1748 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we have experimentally demonstrated that in a rectangular multilayered Ag/SiO2 nanoplate array, electric and magnetic resonances are exchanged at the same frequency simply by changing the polarization of incident light for 90°. Both electric and magnetic resonances originate from localized surface plasmons, and lead to negative permittivity and permeability, respectively. The numerical calculations on electromagnetic fields agree with the experiments. The investigations provide a simple building block for a metamaterial to switch electric and magnetic resonances by external excitation field.

© 2011 OSA

OCIS Codes
(260.5740) Physical optics : Resonance
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: September 16, 2011
Revised Manuscript: October 16, 2011
Manuscript Accepted: October 16, 2011
Published: October 27, 2011

Citation
De Li, Ling Qin, Xiang Xiong, Ru-Wen Peng, Qing Hu, Guo-Bin Ma, Hao-Shen Zhou, and Mu Wang, "Exchange of electric and magnetic resonances in multilayered metal/dielectric nanoplates," Opt. Express 19, 22942-22949 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22942


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  4. A. Battula, S. Chen, Y. Lu, R. J. Knize, and K. Reinhardt, “Tuning the extraordinary optical transmission through subwavelength hole array by applying a magnetic field,” Opt. Lett.32(18), 2692–2694 (2007). [CrossRef] [PubMed]
  5. Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett.101(8), 087401 (2008). [CrossRef] [PubMed]
  6. Z. J. Zhang, R. W. Peng, Z. Wang, F. Gao, X. R. Huang, W. H. Sun, Q. J. Wang, and M. Wang, “Plasmonic antenna array at optical frequency made by nanoapertures,” Appl. Phys. Lett.93(17), 171110 (2008). [CrossRef]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  8. X. Zhang and Z. W. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater.7(6), 435–441 (2008). [CrossRef] [PubMed]
  9. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  10. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science303(5663), 1494–1496 (2004). [CrossRef] [PubMed]
  11. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004). [CrossRef] [PubMed]
  12. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett.30(23), 3198–3200 (2005). [CrossRef] [PubMed]
  13. T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, “Magnetic-field enhancement in gold nanosandwiches,” Opt. Express14(18), 8240–8246 (2006). [CrossRef] [PubMed]
  14. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005). [CrossRef] [PubMed]
  15. K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2 /Au nanodisks,” Appl. Phys. Lett.88(6), 063118 (2006). [CrossRef]
  16. X. Z. Wei, H. F. Shi, X. C. Dong, Y. G. Lu, and C. L. Du, “A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures,” Appl. Phys. Lett.97(1), 011904 (2010). [CrossRef]
  17. Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007). [CrossRef]
  18. X. Xiong, W. H. Sun, Y. J. Bao, R. W. Peng, M. Wang, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, “Switching the electric and magnetic responses in a metamaterial,” Phys. Rev. B80(20), 201105 (2009). [CrossRef]
  19. X. Xiong, X.-C. Chen, M. Wang, R.-W. Peng, D.-J. Shu, and C. Sun, “Optically nonactive assorted helix array with interchangeable magnetic/electric resonance,” Appl. Phys. Lett.98(7), 071901 (2011). [CrossRef]
  20. D. Li, L. Qin, D. X. Qi, F. Gao, R. W. Peng, J. Zou, Q. J. Wang, and M. Wang, “Tunable electric and magnetic resonances in multilayered metal/dielectric nanoplates at optical frequencies,” J. Phys. D Appl. Phys.43(34), 345102 (2010). [CrossRef]
  21. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  22. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30(24), 3356–3358 (2005). [CrossRef] [PubMed]
  23. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B65(19), 195104 (2002). [CrossRef]
  24. T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(6), 065602 (2003). [CrossRef] [PubMed]
  25. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B2(6), 931–949 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited