OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 22951–22960

Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited]

Claudiu M. Cirloganu, Lazaro A. Padilha, Dmitry A. Fishman, Scott Webster, David J. Hagan, and Eric W. Van Stryland  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 22951-22960 (2011)
http://dx.doi.org/10.1364/OE.19.022951


View Full Text Article

Acrobat PDF (1102 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-photon absorption (2PA) spectra with pairs of extremely nondegenerate photons are measured in several direct-gap semiconductors (GaAs, CdTe, ZnO, ZnS and ZnSe) using picosecond or femtosecond pulses. In ZnSe, using photons with a ratio of energies of ~12, we obtain a 270-fold enhancement of 2PA when comparing to the corresponding degenerate 2PA coefficient at the average photon energy (ηω1 + ηω2)/2. This corresponds to a pump photon energy of 8% of the bandgap. 2PA coefficients as large as 1 cm/MW are measured. Thus, by using two widely different wavelengths we are able to access the large 2PA observed previously only in narrow gap semiconductors. We also calculate the corresponding enhancement of nonlinear refraction, consisting of two-photon, AC-Stark and Raman contributions. The net effect is a smaller enhancement, but exhibits very large dispersion within the 2PA regime.

© 2011 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6410) Spectroscopy : Spectroscopy, multiphoton

ToC Category:
Nonlinear Absorption and Dispersion

History
Original Manuscript: September 6, 2011
Revised Manuscript: October 24, 2011
Manuscript Accepted: October 25, 2011
Published: October 28, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express

Citation
Claudiu M. Cirloganu, Lazaro A. Padilha, Dmitry A. Fishman, Scott Webster, David J. Hagan, and Eric W. Van Stryland, "Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited]," Opt. Express 19, 22951-22960 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-22951


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. A. Bolger, A. K. Kar, B. S. Wherrett, R. DeSalvo, D. C. Hutchings, and D. J. Hagan, “Nondegenerate two-photon absorption spectra of ZnSe, ZnS and ZnO,” Opt. Commun.97(3–4), 203–209 (1993). [CrossRef]
  2. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B9(3), 405–414 (1992). [CrossRef]
  3. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” IEEE J. Quantum Electron.27(6), 1296–1309 (1991). [CrossRef]
  4. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett.10(10), 490–492 (1985). [CrossRef] [PubMed]
  5. P. D. Olszak, C. M. Cirloganu, S. Webster, L. A. Padilha, S. Guha, L. P. Gonzalez, S. Krishnamurthy, D. J. Hagan, and E. W. Van Stryland, “Spectral and temperature dependence of two-photon and free-carrier absorption in InSb,” Phys. Rev. B82(23), 235207 (2010). [CrossRef]
  6. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B1(1), 67–72 (1984). [CrossRef]
  7. D. A. Fishman, C. M. Cirloganu, S. Webster, L. A. Padilha, M. Monroe, D. J. Hagan, and E. W. Van Stryland, “Sensitive mid-infrared detection in wide-gap semiconductors using extreme nondegenerate two-photon absorption,” Nat. Photonics5(9), 561–565 (2011). [CrossRef]
  8. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev.92(5), 1324 (1953). [CrossRef]
  9. A. E. Rakhshani, “Study of Urbach tail, bandgap energy and grain-boundary characteristics in CdS by modulated photocurrent spectroscopy,” J. Phys. Condens. Matter12(19), 4391–4400 (2000). [CrossRef]
  10. S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, “Mid-infrared HgTe colloidal quantum dot photodetectors,” Nat. Photonics5(8), 489–493 (2011). [CrossRef]
  11. A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photonics2(4), 238–241 (2008). [CrossRef]
  12. D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. Stryland, “Kramers-Kronig Relations in Nonlinear Optics,” Opt. Quantum Electron.24(1), 1–30 (1992). [CrossRef]
  13. F. T. Arecchi, E. O. Schulz-Dubois, M. L. Stitch, W. B. Colson, C. Pellegrini, and A. Renieri, Laser handbook. 1972, Amsterdam, New York: North-Holland Pub. Co.; American Elsevier Pub. Co. v. <1–6 >.
  14. A. Bhaskar, G. Ramakrishna, Z. Lu, R. Twieg, J. M. Hales, D. J. Hagan, E. Van Stryland, and T. Goodson, “Investigation of two-photon absorption properties in branched alkene and alkyne chromophores,” J. Am. Chem. Soc.128(36), 11840–11849 (2006). [CrossRef] [PubMed]
  15. D. C. Hutchings and E. W. V. Stryland, “Nondegenerate two-photon absorption in zinc blende semiconductors,” J. Opt. Soc. Am. B9(11), 2065–2074 (1992). [CrossRef]
  16. J. M. Hales, D. J. Hagan, E. W. Van Stryland, K. J. Schafer, A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer, and J. L. Bredas, “Resonant enhancement of two-photon absorption in substituted fluorene molecules,” J. Chem. Phys.121(7), 3152–3160 (2004). [CrossRef] [PubMed]
  17. H. D. Jones and H. R. Reiss, “Intense-field effects in solids,” Phys. Rev. B16(6), 2466–2473 (1977). [CrossRef]
  18. D. C. Hutchings and B. S. Wherrett, “Theory of anisotropy of 2-photon absorption in zincblende semiconductors,” Phys. Rev. B49(4), 2418–2426 (1994). [CrossRef]
  19. C. M. Cirloganu, P. D. Olszak, L. A. Padilha, S. Webster, D. J. Hagan, and E. W. V. Stryland, “Three-photon absorption spectra of zinc blende semiconductors: theory and experiment,” Opt. Lett.33(22), 2626–2628 (2008). [CrossRef] [PubMed]
  20. L. V. Keldysh, “Ionization in field of a strong electromagnetic wave,” Sov. Phys. JETP20(5), 1307 (1965).
  21. H. S. Brandi and C. B. Dearaujo, “Multiphoton absorption-coefficients in solids – a universal curve,” J. Phys. C Solid State Phys.16(30), 5929–5936 (1983). [CrossRef]
  22. M. Balu, L. Padilha, D. Hagan, E. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum: erratum,” J. Opt. Soc. Am. B26(8), 1663–1663 (2009). [CrossRef]
  23. R. A. Negres, J. M. Hales, D. J. Hagan, and E. W. Van Stryland, “Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe,” IEEE J. Quantum Electron.38(9), 1205–1216 (2002). [CrossRef]
  24. M. Balu, L. A. Padilha, D. J. Hagan, E. W. Van Stryland, S. Yao, K. Belfield, S. Zheng, S. Barlow, and S. Marder, “Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum,” J. Opt. Soc. Am. B25(2), 159–165 (2008). [CrossRef]
  25. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990). [CrossRef]
  26. K. Ikeda and Y. Fainman, “Material and structural criteria for ultra-fast Kerr nonlinear switching in optical resonant cavities,” Solid-State Electron.51(10), 1376–1380 (2007). [CrossRef]
  27. C. N. Ironside, “2-Photon Gain Semiconductor Amplifier,” IEEE J. Quantum Electron.28(4), 842–847 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited