OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23017–23028

NALM-based, phase-preserving 2R regenerator of high-duty-cycle pulses

Taras I. Lakoba, Jake R. Williams, and Michael Vasilyev  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23017-23028 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (898 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the potential of the nonlinear amplifying loop mirror (NALM)-based phase-preserving 2R (reamplification and reshaping) regenerator for simultaneous regeneration of multiple wavelength-division-multiplexed (WDM) channels. While not considering nonlinear multi-channel propagation, we address two issues of the phase-preserving NALM that appear to us as the major obstacles in adopting it for realistic WDM applications: a high operating power and a detrimental effect of non-small (33% – 50%) pulse duty cycles. After thorough optimization, we find a new operating regime of this regenerator with the non-small duty-cycle capability and approximately an order of magnitude reduction of the required operating power. In addition, we show that the plateau in the input–output power transfer curve does not automatically lead to the reduction of the amplitude jitter, which is particularly noticeable for the non-small duty-cycle pulses.

© 2011 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 8, 2011
Revised Manuscript: October 4, 2011
Manuscript Accepted: October 5, 2011
Published: October 28, 2011

Taras I. Lakoba, Jake R. Williams, and Michael Vasilyev, "NALM-based, phase-preserving 2R regenerator of high-duty-cycle pulses," Opt. Express 19, 23017-23028 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential phase-shift keying signals based on phase-sensitive amplification,” Opt. Lett. 29, 2357–2359 (2004). [CrossRef] [PubMed]
  2. R. Slavik, F. Parmigiani, J. Kakande, C. Lundstrom, M. Sjodin, P. A. Andrekson, R. Weerasuriya, S. Sygletos, A. D. Ellis, L. Gruner-Nielsen, D. Jakobsen, S. Herstrom, R. Phelan, J. O’Gorman, A. Bogris, D. Syvridis, S. Dasgupta, P. Petropoulos, and D. J. Richardson, “All-optical phase and amplitude regenerator for next-generation telecommunications systems,” Nat. Photonics 4, 690–695 (2010). [CrossRef]
  3. M. Matsumoto and H. Sakaguchi, “DPSK signal regeneration using a fiber-based amplitude regenerator,” Opt. Express 16, 11169–11175 (2008). [CrossRef] [PubMed]
  4. A. G. Striegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss, “NOLM-based RZ-DPSK signal regeneration,” IEEE Photon. Technol. Lett. 17, 639–641 (2005). [CrossRef]
  5. S. Boscolo, R. Bhamber, and S.K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron. 42, 619–624 (2006). [CrossRef]
  6. M. Matsumoto, “Performance improvement of phase-shift-keying signal transmission by means of optical limiters using four-wave mixing in fibers,” J. Lightwave Technol. 23, 2696–2701 (2005). [CrossRef]
  7. Q. T. Le, L. Bramerie, H. T. Nguyen, M. Gay, S. Lobo, M. Joindot, J.-L. Oudar, and J.-C. Simon, “Saturable-absorber-based phase-preserving amplitude regeneration of RZ DPSK signals,” IEEE Photon. Technol. Lett. 22, 887–889 (2010). [CrossRef]
  8. A. Fragkos, A. Bogris, D. Syvridis, R. Phelan, J. O’Carroll, B. Kelly, and J. O’Gorman, “Amplitude regeneration of phase encoded signals using injection locking in semiconductor lasers,” Optical Fiber Communication Conference, Optical Society of America, 2011, Technical Digest on CD-ROM, paper OWG1.
  9. G.P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, San Diego, CA, 2001); Chap. 7.
  10. K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Optimization of a nonlinear amplifyAing loop mirror for amplitude regeneration in phase-shift-keyed transmission,” IEEE Photon. Technol. Lett. 19, 1858–1860 (2007). [CrossRef]
  11. T.I. Lakoba, J.R. Williams, and M. Vasilyev, “Low-power, phase-preserving 2R amplitude regenerator,” to appear in Opt. Commun.
  12. A. Bogoni, M. Scaffardi, P. Gelfi, and L. Poti, “Nonlinear optical loop mirrors: investigation, solution, and experimental validation for undesirable counterpropagating effects in all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 10, 1115–1123 (2004). [CrossRef]
  13. M. Vasilyev and T. I. Lakoba, “Fiber-based all-optical 2R regeneration of multiple WDM channels,” in Optical Fiber Communication Conference, Optical Society of America, 2005, Technical Digest on CD-ROM, paper OME62.
  14. T.I. Lakoba and M. Vasilyev, “A new robust regime for a dispersion-managed multichannel 2R regenerator,” Opt. Express 15, 10061–10074 (2007). [CrossRef] [PubMed]
  15. M. Eiselt, “Does spectrally periodic dispersion compensation reduce non-linear effects?” in Proceedings of the 25th European Conference on Optical Communications (ECOC, Nice, France, 1999), Vol. 1, pp. 144–145.
  16. X. Wei, X. Liu, C. Xie, and L. F. Mollenauer, “Reduction of collision-induced timing jitter in dense wavelength-division multiplexing by the use of periodic-group-delay dispersion compensators,” Opt. Lett. 28, 983–985 (2003). [CrossRef] [PubMed]
  17. M. Vasilyev and T. I. Lakoba, “All-optical multichannel 2R regeneration in a fiber-based device,” Opt. Lett. 30, 1458–1460 (2005). [CrossRef] [PubMed]
  18. G. Bellotti and S. Bigo, “Cross-phase modulation suppressor for multispan dispersion-managed WDM transmission,” IEEE Photon. Technol. Lett. 12, 726–728 (2000). [CrossRef]
  19. L. F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, and I. Kang, “Experimental test of dense wavelength-division multiplexing using novel, periofic-group-delay-complemented dispersion compensation and dispersion-managed solitons,” Opt. Lett. 28, 2043–2045 (2003). [CrossRef] [PubMed]
  20. P.G. Patki, M. Vasilyev, and T.I. Lakoba, “All-optical regeneration of multi-wavelength signals,” in IEEE/LEOS European Winter Topical on Nonlinear Processing in Optical Fibres, IEEE2009, pp. 254–255.
  21. C. Stephan, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “Phase preserving amplitude regeneration in DPSK transmission systems using a nonlinear amplifying loop mirror,” IEEE J. Quantum Electron. 45, 1336–1343 (2009). [CrossRef]
  22. K. Sponsel, K. Cvecek, C. Stephan, G. Onishchukov, B. Schmauss, and G. Leuchs, “Influence of group velocity dispersion on phase-preserving amplitude regeneration by a nonlinear amplifying loop mirror,” in Conference on Lasers and Electro-Optics, Optical Society of America, 2008, Technical Digest on CD-ROM, paper JWA95. [CrossRef]
  23. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 12, 1623–1625 (1999). [CrossRef]
  24. C. R. Doerr, L. W. Stulz, S. Cbandrasekhar, L. Buhl, and R. Pafchek, “Multichannel integrated tunable dispersion compensator employing a thermooptic lens,” Optical Fiber Communications Conference 2002, post-deadline paper FA-6.
  25. R. L. Lachance, S. Lelievre, and Y. Painchaud, “50 and 100 GHz multi-channel tunable chromatic dispersion slope compensator,” Optical Fiber Communications Conference, Optical Society of America, 2003, Technical Digest, paper TuD3.
  26. K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett. 19, 146–148 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited