OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23029–23035

Thermal optimization of second harmonic generation at high pump powers

Alexander Sahm, Mirko Uebernickel, Katrin Paschke, Götz Erbert, and Günther Tränkle  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23029-23035 (2011)
http://dx.doi.org/10.1364/OE.19.023029


View Full Text Article

Enhanced HTML    Acrobat PDF (849 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measure the temperature distribution of a 3 cm long periodically poled LiNbO3 crystal in a single-pass second harmonic generation (SHG) setup at 488 nm. By means of three resistance heaters and directly mounted Pt100 sensors the crystal is subdivided in three sections. 9.4 W infrared pump light and 1.3 W of SHG light cause a de-homogenized temperature distribution of 0.2 K between the middle and back section. A sectional offset heating is used to homogenize the temperature in those two sections and thus increasing the conversion efficiency. A 15% higher SHG output power matching the prediction of our theoretical model is achieved.

© 2011 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.6810) Lasers and laser optics : Thermal effects
(190.2620) Nonlinear optics : Harmonic generation and mixing
(140.3515) Lasers and laser optics : Lasers, frequency doubled

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 26, 2011
Revised Manuscript: August 26, 2011
Manuscript Accepted: August 26, 2011
Published: October 28, 2011

Citation
Alexander Sahm, Mirko Uebernickel, Katrin Paschke, Götz Erbert, and Günther Tränkle, "Thermal optimization of second harmonic generation at high pump powers," Opt. Express 19, 23029-23035 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23029


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Maiwald, D. Jedrzejczyk, A. Sahm, K. Paschke, R. Güther, B. Sumpf, G. Erbert, and G. Tränkle, “Second-harmonic-generation microsystem light source at 488 nm for Raman spectroscopy,” Opt. Lett.34(2), 217–219 (2009). [CrossRef] [PubMed]
  2. W. Schulz and R. Poprawe, “Manufacturing with novel high-power diode lasers,” IEEE J. Sel. Top. Quantum Electron.6(4), 696–705 (2000). [CrossRef]
  3. G. Hollemann, B. Braun, P. Heist, J. Symanowski, U. Krause, J. Kraenert, and C. Deter, “High-power laser projection displays,” Proc. SPIE4294, 36–46 (2001). [CrossRef]
  4. M. Maiwald, S. Schwertfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tränkle, “600 mW optical output power at 488 nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal,” Opt. Lett.31(6), 802–804 (2006). [CrossRef] [PubMed]
  5. O. B. Jensen, P. E. Andersen, B. Sumpf, K. H. Hasler, G. Erbert, and P. M. Petersen, “1.5 W green light generation by single-pass second harmonic generation of a single-frequency tapered diode laser,” Opt. Express17(8), 6532–6539 (2009). [CrossRef] [PubMed]
  6. C. Fiebig, A. Sahm, M. Uebernickel, G. Blume, B. Eppich, K. Paschke, and G. Erbert, “Compact second-harmonic generation laser module with 1 W optical output power at 490 nm,” Opt. Express17(25), 22785–22790 (2009). [CrossRef] [PubMed]
  7. P. Q. Liu, C. Fiebig, M. Uebernickel, G. Blume, D. Feise, A. Sahm, D. Jedrzejczyk, K. Paschke, and G. Erbert, “High-power (1.1 W) green (532 nm) laser source based on single-pass second harmonic generation on a compact micro-optical bench,” Proc. SPIE7917, 791704, 791704-7 (2011). [CrossRef]
  8. M. Uebernickel, R. Güther, G. Blume, C. Fiebig, K. Paschke, and G. Erbert, “Study of the properties of the SHG with diode lasers,” Appl. Phys. B99(3), 457–464 (2010). [CrossRef]
  9. C. Fiebig, G. Blume, M. Uebernickel, D. Feise, C. Kaspari, K. Paschke, J. Fricke, H. Wenzel, and G. Erbert, “High-power DBR tapered laser at 980 nm for single path second harmonic generation,” IEEE J. Sel. Top. Quantum Electron.15(3), 978–983 (2009). [CrossRef]
  10. Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, B. Yu, J. Lee, D. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti:LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett.86(1), 011104 (2005). [CrossRef]
  11. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys.39(8), 3597–3639 (1968). [CrossRef]
  12. D. Jedrzejczyk, R. Güther, K. Paschke, B. Eppich, and G. Erbert, “200 mW at 488 nm from a ppMgO:LN ridge waveguide by frequency doubling of a laser diode module,” IEEE Photon. Technol. Lett.22(17), 1282–1284 (2010). [CrossRef]
  13. O. Louchev, N. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys.98(11), 113103 (2005). [CrossRef]
  14. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B91(2), 343–348 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited