OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23085–23096

Binary encoded computer generated holograms for temporal phase shifting

Angela Amphawan  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23085-23096 (2011)
http://dx.doi.org/10.1364/OE.19.023085


View Full Text Article

Enhanced HTML    Acrobat PDF (1782 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The trend towards real-time optical applications predicates the need for real-time interferometry. For real-time interferometric applications, rapid processing of computer generated holograms is crucial as the intractability of rapid phase changes may compromise the input to the system. This paper introduces the design of a set of binary encoded computer generated holograms (CGHs) for real-time five-frame temporal phase shifting interferometry using a binary amplitude spatial light modulator. It is suitable for portable devices with constraints in computational power. The new set of binary encoded CGHs is used for measuring the phase of the generated electric field for a real-time selective launch in multimode fiber. The processing time for the new set of CGHs was reduced by up to 65% relative to the original encoding scheme. The results obtained from the new interferometric technique are in good agreement with the results obtained by phase shifting by means of a piezo-driven flat mirror.

© 2011 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 11, 2011
Revised Manuscript: September 23, 2011
Manuscript Accepted: October 12, 2011
Published: October 31, 2011

Citation
Angela Amphawan, "Binary encoded computer generated holograms for temporal phase shifting," Opt. Express 19, 23085-23096 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23085


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct.20(1), 1–17 (2011). [CrossRef]
  2. H. Su, M. Zervas, C. Furlong, and G. S. Fischer, “A Miniature MRI-Compatible Fiber-optic Force Sensor Utilizing Fabry-Perot Interferometer,” MEMS Nanotech.4, 131–136 (2011). [CrossRef]
  3. V. Cortez-Retamozo, F. K. Swirski, P. Waterman, H. Yuan, J. L. Figueiredo, A. P. Newton, R. Upadhyay, C. Vinegoni, R. Kohler, J. Blois, A. Smith, M. Nahrendorf, L. Josephson, R. Weissleder, and M. J. Pittet, “Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation,” J. Clin. Invest.118(12), 4058–4066 (2008). [CrossRef] [PubMed]
  4. T. Sibillano, A. Ancona, V. Berardi, and P. M. Lugarà, “A Real-Time Spectroscopic Sensor for Monitoring Laser Welding Processes,” Sensors (Basel Switzerland)9(5), 3376–3385 (2009). [CrossRef]
  5. N. Kaneda, Q. Yang, X. Liu, S. Chandrasekhar, W. Shieh, and Y.-K. Chen, “Real-Time 2.5 GS/s Coherent Optical Receiver for 53.3-Gb/s Sub-Banded OFDM,” J. Lightwave Technol.28(4), 494–501 (2010). [CrossRef]
  6. E. M. Ip and J. M. Kahn, “Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing,” J. Lightwave Technol.28(4), 502–519 (2010). [CrossRef]
  7. B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron.16(5), 1180–1192 (2010). [CrossRef]
  8. A. Leven, N. Kaneda, and S. Corteselli, “Real-Time Implementation of Digital Signal Processing for Coherent Optical Digital Communication Systems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1227–1234 (2010). [CrossRef]
  9. R. S. Maldonado, J. A. Izatt, N. Sarin, D. K. Wallace, S. Freedman, C. M. Cotten, and C. A. Toth, “Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children,” Invest. Ophthalmol. Vis. Sci.51(5), 2678–2685 (2010). [CrossRef] [PubMed]
  10. N. Serbecic, S. C. Beutelspacher, F. C. Aboul-Enein, K. Kircher, A. Reitner, and U. Schmidt-Erfurth, “Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography,” Br. J. Ophthalmol.95(6), 804–810 (2011). [CrossRef] [PubMed]
  11. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express19(2), 1217–1227 (2011). [CrossRef] [PubMed]
  12. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  13. R. Tyson, Principles of Adaptive Optics, 3rd Ed. (CRC Press, 2011).
  14. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).
  15. D. W. Robinson, Interferogram Analysis, Digital Fringe Pattern Measurement Techniques (Taylor & Francis, 1993).
  16. Z. Malacara and M. Servín, Interferogram Analysis For Optical Testing, Second Edition (Optical Science and Engineering) (CRC Press, 2005).
  17. Y. Bitou, “Digital phase-shifting interferometer with an electrically addressed liquid-crystal spatial light modulator,” Opt. Lett.28(17), 1576–1578 (2003). [CrossRef] [PubMed]
  18. T. Meeser, C. v. Kopylow, and C. Falldorf, “Advanced Digital Lensless Fourier Holography by means of a Spatial Light Modulator,” in 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON),2010 2010), 1–4.
  19. C. Falldorf, M. Agour, C. V. Kopylow, and R. B. Bergmann, “Phase retrieval by means of a spatial light modulator in the Fourier domain of an imaging system,” Appl. Opt.49(10), 1826–1830 (2010). [CrossRef] [PubMed]
  20. I. W. Jung, Spatial Light Modulators and Applications Spatial Light Modulators for Applications in Coherent Communication, Adaptive Optics and Maskless Lithography (VDM Verlag,2009).
  21. M. A. A. Neil, T. Wilson, and R. Juskaitis, “A wavefront generator for complex pupil function synthesis and point spread function engineering,” J. Microsc.197(3), 219–223 (2000). [CrossRef] [PubMed]
  22. S. Bois, Next Generation Fibers and Standards (Corning Optical Fiber 2009).
  23. Cisco, “Cisco Visual Networking Index: Forecast and Methodology,” 2009-2014 (2010).
  24. J. Gowar, Optical communication systems, 2nd ed., Prentice-Hall international series in optoelectronics (Prentice Hall, New York, 1993), pp. xvi, 696.
  25. M. B. Shemirani and J. M. Kahn, “Higher-Order Modal Dispersion in Graded-Index Multimode Fiber,” J. Lightwave Technol.27(23), 5461–5468 (2009). [CrossRef]
  26. L. Raddatz, I. H. White, D. G. Cunningham, and M. C. Nowell, “An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links,” J. Lightwave Technol.16(3), 324–331 (1998). [CrossRef]
  27. A. Amphawan, F. Payne, D. O'Brien, and N. Shah, “Derivation of an analytical expression for the power coupling coefficient for offset launch into multimode fiber,” J. Lightwave Technol.28(6), 861–869 (2010). [CrossRef]
  28. K. Balemarthy, A. Polley, and S. E. Ralph, “Electronic equalization of multikilometer 10-Gb/s multimode fiber links: mode-coupling effects,” J. Lightwave Technol.24(12), 4885–4894 (2006). [CrossRef]
  29. C. Xia, M. Ajgaonkar, and W. Rosenkranz, “On the performance of the electrical equalization technique in MMF links for 10-gigabit ethernet,” J. Lightwave Technol.23(6), 2001–2011 (2005). [CrossRef]
  30. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and J. R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)
  31. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over Two Modes of 40km-long Prototype Few-Mode Fiber, using LCOS-based Mode Multiplexer and Demultiplexer,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)
  32. A. Li, A. A. Amin, X. Chen, and W. Shieh, “Reception of Mode and Polarization Multiplexed 107-Gb/s COOFDM Signal over a Two-Mode Fiber,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)
  33. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler,” in The Optical Fiber Communication Conference and Exposition (OFC) and the National Fiber Optic Engineers Conference (NFOEC)2011, 2011)
  34. E. Alon, V. Stojanovic, J. M. Kahn, S. Boyd, and M. Horowitz, “Equalization of modal dispersion in multimode fiber using spatial light modulators,” in GLOBECOM '04. IEEE Global Telecommunications Conference, (IEEE, 2004), 1023- 1029.
  35. P. L. Neo, J. P. Freeman, and T. D. Wilkinson, “Modal Control of a 50μm core diameter Multimode Fiber Using a Spatial Light Modulator,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference,2007. OFC/NFOEC 2007. Conference on, (Optical Society of America, 2007), 1–3.
  36. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Increasing Multimode Fiber Transmission Capacity by Mode Selective Spatial Light Phase Modulation,” in 36th European Conference on Optical Communications, 2010)
  37. A. Amphawan, “Holographic mode-selective launch for bandwidth enhancement in multimode fiber,” Opt. Express19(10), 9056–9065 (2011). [CrossRef] [PubMed]
  38. Thorlabs, “Tools of the Trade, Volume 20,” (Thorlabs Catalogue, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited