OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23118–23131

Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission

Zining Yang, Hongyan Wang, Qisheng Lu, Weihong Hua, and Xiaojun Xu  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23118-23131 (2011)
http://dx.doi.org/10.1364/OE.19.023118


View Full Text Article

Enhanced HTML    Acrobat PDF (2041 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diode pumped alkali vapor amplifier (DPAA) is a potential candidate in high power laser field. In this paper, we set up a model for the diode double-side-pumped alkali vapor amplifier. For the three-dimensional volumetric gain medium, both the longitudinal and transverse amplified spontaneous emission (ASE) effects are considered and coupled into the rate equations. An iterative numerical approach is proposed to solve the model. Some important influencing factors are simulated and discussed. The results show that in the case of saturated amplification, the ASE effect can be well suppressed rather than a limitation in power scaling of a DPAA.

© 2011 OSA

OCIS Codes
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.3460) Lasers and laser optics : Lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 25, 2011
Revised Manuscript: October 17, 2011
Manuscript Accepted: October 19, 2011
Published: October 31, 2011

Citation
Zining Yang, Hongyan Wang, Qisheng Lu, Weihong Hua, and Xiaojun Xu, "Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission," Opt. Express 19, 23118-23131 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23118


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Page, R. J. Beach, V. K. Kanz, and W. F. Krupke, “Multimode-diode-pumped gas (alkali-vapor) laser,” Opt. Lett.31(3), 353–355 (2006). [CrossRef] [PubMed]
  2. C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun.283(21), 4328–4332 (2010). [CrossRef]
  3. W. S. Miller, C. V. Sulham, J. C. Holtgrave, and G. P. Perram, “Limitations of an optically pumped rubidium laser imposed by atom recycle rate,” Appl. Phys. B103(4), 819–824 (2011). [CrossRef]
  4. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett.32(15), 2167–2169 (2007). [CrossRef] [PubMed]
  5. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett.33(5), 414–415 (2008). [CrossRef] [PubMed]
  6. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48W output power,” Electron. Lett.44(9), 582–583 (2008). [CrossRef]
  7. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Cs laser with unstable cavity transversely pumped by multiple diode lasers,” Opt. Express17(17), 14767–14770 (2009). [CrossRef] [PubMed]
  8. J. Zweiback, G. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun.282(9), 1871–1873 (2009). [CrossRef]
  9. J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE7581, 75810G, 75810G-5 (2010). [CrossRef]
  10. J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor lasers,” Proc. SPIE7915, 791509, 791509-7 (2011). [CrossRef]
  11. Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894-nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Express2, 032501 (2009). [CrossRef]
  12. D. A. Hostutler and W. L. Klennert, “Power enhancement of a Rubidium vapor laser with a master oscillator power amplifier,” Opt. Express16(11), 8050–8053 (2008). [CrossRef] [PubMed]
  13. B. V. Zhdanov and R. J. Knize, “Efficienct diode pumped cesium vapor amplifier,” Opt. Commun.281(15-16), 4068–4070 (2008). [CrossRef]
  14. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, “Scaling of diode pumped Cs laser: transverse pump, unstable cavity, MOPA,” Proc. SPIE7581, 75810F, 75810F-6 (2010). [CrossRef]
  15. B. Pan, Y. Wang, Q. Zhu, and J. Yang, “Modeling of an alkali vapor laser MOPA system,” Opt. Commun.284(7), 1963–1966 (2011). [CrossRef]
  16. L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A8(4), 2031–2047 (1973). [CrossRef]
  17. P. A. Schulz, K. F. Wall, and R. L. Aggarwal, “Simple model for amplified spontaneous emission in a Ti:A12O3 amplifier,” Opt. Lett.13(12), 1081–1083 (1988). [CrossRef] [PubMed]
  18. C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” J. Lightwave Technol.9(2), 271–283 (1991). [CrossRef]
  19. D. Albach, F. Assémat, S. Bahbah, G. Bourdet, J.-C. Chanteloup, P. Piatti, M. Pluvinage, B. Vincent, and G. Le Touzé, “A key issue for next generation Diode Pumped Solid State Laser Drivers for IFE: Amplified Spontaneous Emission in large size, high gain Yb:YAG slabs,” J. Phys.: Conf. Series112(3), 032057 (2008). [CrossRef]
  20. C. Goren, Y. Tzuk, G. Marcus, and S. Pearl, “Amplified spontaneous emission in slab amplifiers,” IEEE J. Quantum Electron.42(12), 1239–1247 (2006). [CrossRef]
  21. Z. Yang, H. Wang, Q. Lu, Y. Li, W. Hua, X. Xu, and J. Chen, “Modeling, numerical approach, and power scaling of alkali vapor lasers in side-pumped configuration with flowing medium,” J. Opt. Soc. Am. B28(6), 1353–1364 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited