OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23153–23161

All-optical 1st and 2nd order integration on a chip

Marcello Ferrera, Yongwoo Park, Luca Razzari, Brent E. Little, Sai T. Chu, Roberto Morandotti, David J. Moss, and José Azaña  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23153-23161 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1912 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate all-optical temporal integration of arbitrary optical waveforms with temporal features as short as ~1.9ps. By using a four-port micro-ring resonator based on CMOS compatible doped glass technology we perform the 1st- and 2nd-order cumulative time integral of optical signals over a bandwidth that exceeds 400GHz. This device has applications for a wide range of ultra-fast data processing and pulse shaping functions as well as in the field of optical computing for the real-time analysis of differential equations.

© 2011 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(070.7145) Fourier optics and signal processing : Ultrafast processing

ToC Category:
Integrated Optics

Original Manuscript: September 14, 2011
Revised Manuscript: October 18, 2011
Manuscript Accepted: October 18, 2011
Published: October 31, 2011

Marcello Ferrera, Yongwoo Park, Luca Razzari, Brent E. Little, Sai T. Chu, Roberto Morandotti, David J. Moss, and José Azaña, "All-optical 1st and 2nd order integration on a chip," Opt. Express 19, 23153-23161 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, “Fiber-optic Communication Systems,” in Microwave and Optical Engineering, 3rd ed. (John Wiley & Sons, Inc. New York, 2002).
  2. P. Kinget and M. Steyaert, “Analog VLSI Integration of Massive Parallel Processing Systems,” in The Springer International Series in Engineering and Computer Science, ed. (Kluwer Academic Publishers, Boston, Dordrecht, London, 2010).
  3. M. Tooley, “Electronic Circuits - Fundamentals & Applications,” in Advanced Technological and Higher National Certificates Kingston University, ed. (Elsevier Ltd., Oxford UK, 2006).
  4. A. Mehrotra and A. L. Sangiovanni-Vincentelli, Noise Analysis of Radio Frequency Circuits, ed. (Kluwer Academic Publishers, Massachusetts, 2010).
  5. C. W. Hsue, L. C. Tsai, and K.-L. Chen, “Implementation of First-Order and Second-Order Microwave Differentiator,” IEEE Trans. Microw. Theory Tech. 52(5), 1443–1448 (2004). [CrossRef]
  6. M. H. Asghari and J. Azaña, “On the Design of Efficient and Accurate Arbitrary-Order Temporal Optical Integrators Using Fiber Bragg Gratings”, J. Lightwave Technol. 27(17), 3888–3895 (2009). [CrossRef]
  7. Y. Park, T. J. Ahn, Y. Dai, J. Yao, and J. Azaña, “All-optical temporal integration of ultrafast pulse waveforms,” Opt. Express 16(22), 17817–17825 (2008). [CrossRef] [PubMed]
  8. N. Q. Ngo and L. N. Binh, “Optical realization of Newton-Cotes-Based Integrators for Dark Soliton Generation,” J. Lightwave Technol. 24(1), 563–572 (2006). [CrossRef]
  9. M. H. Asghari and J. Azaña, “Photonic Integrator-Based Optical Memory Unit,” IEEE Photon. Technol. Lett. 23(4), 209–211 (2011). [CrossRef]
  10. Y. Ding, X. Zhang, X. Zhang, and D. Huang, “Active microring optical integrator associated with electroabsorption modulators for high speed low light power loadable and erasable optical memory unit,” Opt. Express 17(15), 12835–12848 (2009). [CrossRef] [PubMed]
  11. Y. Jin, P. Costanzo-Caso, S. Granieri, and A. Siahmakoun, “Photonic integrator for A/D conversion,” Proc. SPIE 7797, 1–8 (2010).
  12. R. Slavík, Y. Park, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, and J. Azaña, “Photonic temporal integrator for all-optical computing,” Opt. Express 16(22), 18202–18214 (2008). [CrossRef] [PubMed]
  13. G. F. Simmons, Differential Equations with Applications and Historical Notes, 2nd ed. (McGraw-Hill, New York, 1991).
  14. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat. Commun. 1 (2010) [CrossRef]
  15. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004). [CrossRef] [PubMed]
  16. J. Azaña, “Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator,” Opt. Lett. 33(1), 4–6 (2008). [CrossRef] [PubMed]
  17. M. A. Preciado and M. A. Muriel, “Ultrafast all-optical integrator based on a fiber Bragg grating: proposal and design,” Opt. Lett. 33(12), 1348–1350 (2008). [CrossRef] [PubMed]
  18. N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007). [CrossRef] [PubMed]
  19. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. T. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008). [CrossRef]
  20. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. T. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010). [CrossRef]
  21. Y. Park, F. Li, and J. Azaña, “Characterization and optimization of optical pulse differentiation using spectral interferometry,” IEEE Photon. Technol. Lett. 18(17), 1798–1800 (2006). [CrossRef]
  22. L. Lepetit, G. Chériaux, and M. Joffre, “Linear technique of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12(12), 2467–2474 (1995). [CrossRef]
  23. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000). [CrossRef]
  24. A. P. Heberle, J. J. Baumberg, and K. Köhler, “Ultrafast coherent control and destruction of excitons in quantum wells,” Phys. Rev. Lett. 75(13), 2598–2601 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited