OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23162–23170

Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing

Leimeng Zhuang, David Marpaung, Maurizio Burla, Willem Beeker, Arne Leinse, and Chris Roeloffzen  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23162-23170 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1782 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the design and characterization of Si3N4/SiO2 optical waveguides which are specifically developed for optical delay lines in microwave photonics (MWP) signal processing applications. The waveguide structure consists of a stack of two Si3N4 stripes and SiO2 as an intermediate layer. Characterization of the waveguide propagation loss was performed in race track-shaped optical ring resonators (ORRs) with a free-spectral range of 20 GHz and a bending radius varied from 50 μm to 125 μm. A waveguide propagation loss as low as 0.095 dB/cm was measured in the ORRs with bend radii ≥ 70 μm. Using the waveguide technology two types of RF-modulated optical sideband filters with high sideband suppression and small transition band consisting of an Mach-Zehnder interferometer and ORRs are also demonstrated. These results demonstrate the potential of the waveguide technology to be applied to construct compact on-chip MWP signal processors.

© 2011 OSA

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.5060) Fiber optics and optical communications : Phase modulation
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(130.3120) Integrated optics : Integrated optics devices
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 19, 2011
Revised Manuscript: October 13, 2011
Manuscript Accepted: October 17, 2011
Published: October 31, 2011

Leimeng Zhuang, David Marpaung, Maurizio Burla, Willem Beeker, Arne Leinse, and Chris Roeloffzen, "Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing," Opt. Express 19, 23162-23170 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  2. A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002). [CrossRef]
  3. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-Time Optical Processing of Microwave Signals,” J. Lightwave Technol. 23(2), 702–723 (2005). [CrossRef]
  4. R. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006). [CrossRef]
  5. N. N. Feng, P. Dong, D. Feng, W. Qian, H. Liang, D. C. Lee, J. B. Luff, A. Agarwal, T. Banwell, R. Menendez, P. Toliver, T. K. Woodward, and M. Asghari, “Thermally-efficient reconfigurable narrowband RF-photonic filter,” Opt. Express 18(24), 24648–24653 (2010). [CrossRef] [PubMed]
  6. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express 19(14), 13245–13256 (2011). [CrossRef] [PubMed]
  7. R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011). [CrossRef] [PubMed]
  8. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, D. A. I. Leimeng Zhuang, M. J. Marpaung, M. Bentum, J. Burla, P. Verpoorte, A. Jorna, A. Hulzinga, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array receive antennas-Part I: design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010). [CrossRef]
  9. C. G. H. L. Zhuang, A. Roeloffzen, M. Meijerink, D. Burla, A. Marpaung, M. Leinse, R. G. Hoekman, Heideman, and W. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array receive antennas-Part II: experimental prototype,” J. Lightwave Technol. 28(1), 19–31 (2010). [CrossRef]
  10. D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proceedings of the 5th European Conference on Antennas and Propagation (EuCAP) (2011), pp. 2774–2778 .
  11. C. G. H. Roeloffzen, A. Meijerink, L. Zhuang, D. A. I. Marpaung, R. G. Heideman, A. Leinse, M. Hoekman, and W. van Etten, “Integrated photonic beamformer employing continuously tunable ring resonator-based delays in CMOS-compatible LPCVD waveguide technology,” Proc. SPIE 7135, 71351K (2008). [CrossRef]
  12. F. Liu, T. Wang, L. Qiang, T. Ye, Z. Zhang, M. Qiu, and Y. Su, “Compact optical temporal differentiator based on silicon microring resonator,” Opt. Express 16(20), 15880–15886 (2008). [CrossRef] [PubMed]
  13. M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti, D. J. Moss, and J. Azaña, “On-chip CMOS-compatible all-optical integrator,” Nat Commun 1(3), 29 (2010). [CrossRef] [PubMed]
  14. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010). [CrossRef]
  15. H. Takahashi, “Planar lightwave circuit devices for optical communication: present and future,” Proc. SPIE 5246, 520–531 (2003). [CrossRef]
  16. Y. Li and C. Henry, “Silica-based optical integrated circuits,” IEEE Proc. Optoelectron. 143(5), 263–280 (1996). [CrossRef]
  17. R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol. 12(8), 1369–1372 (1994). [CrossRef]
  18. M. John, Senior, Optical Fiber Communications Principles and Practice, 2nd ed. (Pearson Education, 1992).
  19. T. Kominato, Y. Hida, M. Itoh, H. Takahashi, S. Sohma, T. Kitoh, and Y. Hibino, “Extremely low-loss (0.3 dB/m) and long silica-based waveguides with large width and clothoid curve connection,” in Proceedings of ECOC (2004).
  20. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De la Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44(2), 115–116 (2008). [CrossRef]
  21. Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, and M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a double-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004). [CrossRef]
  22. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009). [CrossRef] [PubMed]
  23. M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc. 158(3), H281–H284 (2011). [CrossRef]
  24. F. Morichetti, A. Melloni, M. Martinelli, R. É. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: a new concept in integrated optics?” J. Lightwave Technol. 25(9), 2579–2589 (2007). [CrossRef]
  25. J. F. Bauters, M. J. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19(4), 3163–3174 (2011). [CrossRef] [PubMed]
  26. L. Zhuang, Ring Resonator-Based Broadband Photonic Beam Former for Phased Array Antennas, PhD thesis (University of Twente, Enschede, The Netherlands, 2009).
  27. C. G. H. Roeloffzen, L. Zhuang, R. G. Heideman, A. Borreman, and W. van Etten, “Ring resonator-based tunable optical delay line in LPCVD waveguide technology,” in Proceedings Symposium IEEE/LEOS Benelux Chapter, 2005 (IEEE/LEOS, 2005), pp. 79–82.
  28. K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission system,” J. Lightwave Technol. 6(6), 1016–1023 (1988). [CrossRef]
  29. Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited