OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23171–23187

Light bullets in waveguide arrays: spacetime-coupling, spectral symmetry breaking and superluminal decay [Invited]

Falk Eilenberger, Stefano Minardi, Alexander Szameit, Ulrich Röpke, Jens Kobelke, Kay Schuster, Hartmut Bartelt, Stefan Nolte, Andreas Tünnermann, and Thomas Pertsch  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23171-23187 (2011)
http://dx.doi.org/10.1364/OE.19.023171


View Full Text Article

Enhanced HTML    Acrobat PDF (4366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the effects of the space-time coupling (STC) on the nonlinear formation and propagation of Light Bullets, spatiotemporal solitons in which dispersion and diffraction along all dimensions are balanced by nonlinearity, through periodic media with a weak transverse modulation of the refractive index, i.e. waveguide arrays. The STC arises from wavelength dependence of the strength of inter-waveguide coupling and can be tuned by variation of the array geometry. We show experimentally and numerically that the STC breaks the spectral symmetry of Light Bullets to a considerable degree and modifies their group velocity, leading to superluminal propagation when the Light Bullets decay.

© 2011 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Waveguide Arrays

History
Original Manuscript: September 1, 2011
Revised Manuscript: October 18, 2011
Manuscript Accepted: October 21, 2011
Published: November 1, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express
(2011) Advances in Optics and Photonics

Citation
Falk Eilenberger, Stefano Minardi, Alexander Szameit, Ulrich Röpke, Jens Kobelke, Kay Schuster, Hartmut Bartelt, Stefan Nolte, Andreas Tünnermann, and Thomas Pertsch, "Light bullets in waveguide arrays: spacetime-coupling, spectral symmetry breaking and superluminal decay [Invited]," Opt. Express 19, 23171-23187 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23171


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Dogariu, A. Kuzmich, and L. J. Wang, “Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity,” Phys. Rev. A63(5), 053806 (2001). [CrossRef]
  2. A. Dogariu, A. Kuzmich, H. Cao, and L. Wang, “Superluminal light pulse propagation via rephasing in a transparent anomalously dispersive medium,” Opt. Express8(6), 344–350 (2001). [CrossRef] [PubMed]
  3. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett.71(5), 708–711 (1993). [CrossRef] [PubMed]
  4. A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, “Signal velocity, causality, and quantum noise in superluminal light pulse propagation,” Phys. Rev. Lett.86(18), 3925–3929 (2001). [CrossRef] [PubMed]
  5. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, “The speed of information in a ‘fast-light’ optical medium,” Nature425(6959), 695–698 (2003). [CrossRef] [PubMed]
  6. G. Nimtz, “Evanescent modes are not necessarily Einstein causal,” Eur. Phys. J. B7(4), 523–525 (1999), doi:. [CrossRef]
  7. M. Nakazawa, T. Yamamoto, and K. Tamura, “1.28 tbit/s–70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000). [CrossRef]
  8. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express18(2), 1438–1443 (2010). [CrossRef] [PubMed]
  9. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express18(16), 17252–17261 (2010). [CrossRef] [PubMed]
  10. A. Stepanov, J. Kuhl, I. Kozma, E. Riedle, G. Almási, and J. Hebling, “Scaling up the energy of THz pulses created by optical rectification,” Opt. Express13(15), 5762–5768 (2005). [CrossRef] [PubMed]
  11. R. Danielius, A. Piskarskas, P. Di Trapani, A. Andreoni, C. Solcia, and P. Foggi, “Matching of group velocities by spatial walk-off in collinear three-wave interaction with tilted pulses,” Opt. Lett.21(13), 973–975 (1996). [CrossRef] [PubMed]
  12. D. Faccio, A. Averchi, A. Dubietis, P. Polesana, A. Piskarskas, P. D. Trapani, and A. Couairon, “Stimulated Raman X waves in ultrashort optical pulse filamentation,” Opt. Lett.32(2), 184–186 (2007). [CrossRef] [PubMed]
  13. O. Martinez, “Achromatic phase matching for second harmonic generation of femtosecond pulses,” IEEE J. Quantum Electron.25(12), 2464–2468 (1989). [CrossRef]
  14. P. Saari and K. Reivelt, “Evidence of x-shaped propagation-invariant localized light waves,” Phys. Rev. Lett.79(21), 4135–4138 (1997). [CrossRef]
  15. A. V. Gorbach and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal helical beams in a Raman medium,” Phys. Rev. Lett.98(24), 243601 (2007). [CrossRef] [PubMed]
  16. P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, C. Conti, and S. Trillo, “Spontaneously generated X-shaped light bullets,” Phys. Rev. Lett.91(9), 093904 (2003). [CrossRef] [PubMed]
  17. D. Faccio, M. A. Porras, A. Dubietis, F. Bragheri, A. Couairon, and P. Di Trapani, “Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses,” Phys. Rev. Lett.96(19), 193901 (2006). [CrossRef] [PubMed]
  18. S. Minardi, A. Gopal, A. Couairon, G. Tamoašuskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Accurate retrieval of pulse-splitting dynamics of a femtosecond filament in water by time-resolved shadowgraphy,” Opt. Lett.34(19), 3020–3022 (2009). [CrossRef] [PubMed]
  19. I. Blonskyi, V. Kadan, O. Shpotyuk, and I. Dmitruk, “Manifestations of sub- and superluminality in filamented femtosecond laser pulse in fused silica,” Opt. Commun.282(9), 1913–1917 (2009). [CrossRef]
  20. C. J. Benton and D. V. Skryabin, “Coupling induced anomalous group velocity dispersion in nonlinear arrays of silicon photonic wires,” Opt. Express17(7), 5879–5884 (2009). [CrossRef] [PubMed]
  21. C. J. Benton, A. V. Gorbach, and D. V. Skryabin, “Spatiotemporal quasisolitons and resonant radiation in arrays of silicon-on-insulator photonic wires,” Phys. Rev. A78(3), 033818 (2008). [CrossRef]
  22. A. V. Gorbach, W. Ding, O. K. Staines, C. E. de Nobriga, G. D. Hobbs, W. J. Wadsworth, J. C. Knight, D. V. Skryabin, A. Samarelli, M. Sorel, and R. M. De La Rue, “Spatiotemporal nonlinear optics in arrays of subwavelength waveguides,” Phys. Rev. A82(4), 041802 (2010). [CrossRef]
  23. Y. Silberberg, “Collapse of optical pulses,” Opt. Lett.15(22), 1282–1284 (1990). [CrossRef] [PubMed]
  24. S. Minardi, F. Eilenberger, Y. V. Kartashov, A. Szameit, U. Röpke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, L. Torner, F. Lederer, A. Tünnermann, and T. Pertsch, “Three-dimensional light bullets in arrays of waveguides,” Phys. Rev. Lett.105(26), 263901 (2010). [CrossRef] [PubMed]
  25. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys.83(1), 247–306 (2011). [CrossRef]
  26. Y. S. Kivshar and S. K. Turitsyn, “Spatiotemporal pulse collapse on periodic potentials,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(4), R2536–R2539 (1994). [CrossRef] [PubMed]
  27. A. B. Aceves and C. De Angelis, “Spatiotemporal pulse dynamics in a periodic nonlinear waveguide,” Opt. Lett.18(2), 110–112 (1993). [CrossRef] [PubMed]
  28. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424(6950), 817–823 (2003). [CrossRef] [PubMed]
  29. S. K. Turitsyn, “Collapse criterion for a pulse dynamics in a periodic nonlinear waveguide,” Opt. Lett.18(18), 1493–1495 (1993). [CrossRef] [PubMed]
  30. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep.463(1-3), 1–126 (2008). [CrossRef]
  31. Y. Kivshar and G. Agrawal, Optical Solitons (Academic Press, 2003).
  32. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B: Quantum Semiclassical Opt.7(5), R53–R72 (2005).
  33. J. E. Rothenberg, “Pulse splitting during self-focusing in normally dispersive media,” Opt. Lett.17(8), 583–585 (1992). [CrossRef] [PubMed]
  34. A. Szameit, M. C. Rechtsman, O. Bahat-Treidel, and M. Segev, “Pt-symmetry in honeycomb photonic lattices,” Phys. Rev. A84(2), 021806 (2011). [CrossRef]
  35. F. Bragheri, D. Faccio, F. Bonaretti, A. Lotti, M. Clerici, O. Jedrkiewicz, C. Liberale, S. Henin, L. Tartara, V. Degiorgio, and P. Di Trapani, “Complete retrieval of the field of ultrashort optical pulses using the angle-frequency spectrum,” Opt. Lett.33(24), 2952–2954 (2008). [CrossRef] [PubMed]
  36. A. Zozulya and S. Diddams, “Dynamics of self-focused femtosecond laser pulses in the near and far fields,” Opt. Express4(9), 336–343 (1999). [CrossRef] [PubMed]
  37. M. A. Porras, I. Gonzalo, and A. Mondello, “Pulsed light beams in vacuum with superluminal and negative group velocities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(6), 066604 (2003). [CrossRef] [PubMed]
  38. S. Malaguti, G. Bellanca, and S. Trillo, “Two-dimensional envelope localized waves in the anomalous dispersion regime,” Opt. Lett.33(10), 1117–1119 (2008). [CrossRef] [PubMed]
  39. A. Szameit, T. Pertsch, F. Dreisow, S. Nolte, A. Tünnermann, U. Peschel, and F. Lederer, “Light evolution in arbitrary two-dimensional waveguide arrays,” Phys. Rev. A75(5), 053814 (2007). [CrossRef]
  40. A. Szameit, D. Blömer, J. Burghoff, T. Pertsch, S. Nolte, and A. Tünnermann, “Hexagonal waveguide arrays written with fs-laser pulses,” Appl. Phys. B82(4), 507–512 (2006). [CrossRef]
  41. F. Eilenberger, S. Minardi, A. Szameit, U. Röpke, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, L. Torner, F. Lederer, A. Tünnermann, and T. Pertsch, “Evolution dynamics of discrete-continuous light bullets,” Phys. Rev. A84(1), 013836 (2011). [CrossRef]
  42. F. Eilenberger, A. Szameit, and T. Pertsch, “Transition from discrete to continuous townes solitons in periodic media,” Phys. Rev. A82(4), 043802 (2010). [CrossRef]
  43. G. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  44. N. Vakhitov and A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron.16(7), 783–789 (1973). [CrossRef]
  45. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 046602 (2002). [CrossRef] [PubMed]
  46. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature422(6928), 147–150 (2003). [CrossRef] [PubMed]
  47. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett.90(2), 023902 (2003). [CrossRef] [PubMed]
  48. U. Röpke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, “Fiber waveguide arrays as model system for discrete optics,” Appl. Phys. B104(3), 481–486 (2011), doi:. [CrossRef]
  49. U. Röpke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, “Two-dimensional high-precision fiber waveguide arrays for coherent light propagation,” Opt. Express15(11), 6894–6899 (2007). [CrossRef] [PubMed]
  50. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003). [CrossRef] [PubMed]
  51. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  52. T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett.93(5), 053901 (2004). [CrossRef] [PubMed]
  53. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature446(7131), 52–55 (2007). [CrossRef] [PubMed]
  54. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(3), 036604 (2004). [CrossRef] [PubMed]
  55. I. Babushkin, A. Husakou, J. Herrmann, and Y. S. Kivshar, “Frequency-selective self-trapping and supercontinuum generation in arrays of coupled nonlinear waveguides,” Opt. Express15(19), 11978–11983 (2007). [CrossRef] [PubMed]
  56. P. Kinsler, “Unidirectional optical pulse propagation equation for materials with both electric and magnetic responses,” Phys. Rev. A81(2), 023808 (2010). [CrossRef]
  57. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 å via four-photon coupling in glass,” Phys. Rev. Lett.24(11), 584–587 (1970). [CrossRef]
  58. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  59. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  60. C. Conti, S. Trillo, P. Di Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, and J. Trull, “Nonlinear electromagnetic X waves,” Phys. Rev. Lett.90(17), 170406 (2003). [CrossRef] [PubMed]
  61. M. Kolesik, E. M. Wright, and J. V. Moloney, “Dynamic nonlinear X waves for femtosecond pulse propagation in water,” Phys. Rev. Lett.92(25), 253901 (2004). [CrossRef] [PubMed]
  62. M. Heinrich, A. Szameit, F. Dreisow, R. Keil, S. Minardi, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, “Observation of three-dimensional discrete-continuous x waves in photonic lattices,” Phys. Rev. Lett.103(11), 113903 (2009). [CrossRef] [PubMed]
  63. M. A. C. Potenza, S. Minardi, J. Trull, G. Blasi, D. Salerno, A. Varanavicius, A. Piskarskas, and P. D. Trapani, “Three dimensional imaging of short pulses,” Opt. Commun.229(1-6), 381–390 (2004). [CrossRef]
  64. S. Minardi, J. Trull, and M. A. C. Potenza, “Holographic properties of parametric image conversion for spatiotemporal imaging of ultrashort laser pulses,” J. Hologr. Speckle5(1), 85–93 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited