OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23202–23214

Carrier-envelope phase locking of multi-pulse lasers with an intra-cavity Mach-Zehnder interferometer

Mark Shtaif, Curtis R. Menyuk, Michael L. Dennis, and Michael C. Gross  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23202-23214 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (908 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose the use of an intra-cavity Mach Zehnder interferometer (MZI), for increasing the repetition rate at which carrier-envelope phase-locked pulses are generated in passively mode-locked fiber lasers. The attractive feature of the proposed scheme is that light escaping through the open output ports of the MZI can be used as a monitor signal feeding a servo loop that allows multiple pulses to co-exist in the cavity, while rigidly controlling their separation. The proposed scheme enables in principle a significant increase in the pulse-rate with no deterioration in the properties of the generated pulses.

© 2011 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 5, 2011
Revised Manuscript: August 26, 2011
Manuscript Accepted: September 8, 2011
Published: November 1, 2011

Mark Shtaif, Curtis R. Menyuk, Michael L. Dennis, and Michael C. Gross, "Carrier-envelope phase locking of multi-pulse lasers with an intra-cavity Mach-Zehnder interferometer," Opt. Express 19, 23202-23214 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  2. R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett., 85, 2264–2267 (2000). [CrossRef] [PubMed]
  3. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008) [CrossRef] [PubMed]
  4. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007). [CrossRef] [PubMed]
  5. S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324 (2004). [CrossRef] [PubMed]
  6. J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, “Low-noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 650–651 (2005). [CrossRef]
  7. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B. 27, B51–B62 (2010). [CrossRef]
  8. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science, vol.  326, p. 681 (2009). [CrossRef] [PubMed]
  9. D. A. Howe and A. Hati, “Low-noise X-band oscillator and amplifier technologies: Comparison and status,” Proc. 2005 Int. Freq. Control Symp. and Precise Time and Time Interval Sys. Mtg. IEEE: Piscataway, NJ, 2005, 481–487.
  10. I. Hartl, A. Romann, and M. E. Fermann, “Passively mode locked GHz femtosecond Yb-fiber laser using an intra-cavity martinez compressor,” Proc. Conf. Lasers and Electro-Optics2011, Optical Society of America, paper CMD3.
  11. J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external rate multiplication,” Opt. Lett. 33, 959–961 (2008). [CrossRef] [PubMed]
  12. S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, “Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb,” Opt. Express 17, 3331–3340 (2009). [CrossRef] [PubMed]
  13. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs,” J. Opt. Soc. Am. B 24, 1756–1770 (2007). [CrossRef]
  14. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008). [CrossRef] [PubMed]
  15. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, M. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photon. 2, 355–359 (2008). [CrossRef]
  16. E. Yoshida, Y. Kimura, and M. Nakazawa, “Laser diode-pumped femtosecond Erbium doped fiber laser with a sub-ring cavity for repitition rate control,” Appl. Phys. Lett. 60, 932–934 (1992). [CrossRef]
  17. G.T. Harvey and L.F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett. 18, 107–109 (1993). [CrossRef] [PubMed]
  18. O. Pottiez, O. Deparis, R. Kiyan, M. Haelterman, P. Emplit, P. Mégret, and M. Blondel, “Supermode noise of harmonically mode-locked erbium fiber lasers with composite cavity,” IEEE J. Quantum Electron.,  38, 252–259 (2002). [CrossRef]
  19. Y. Parkhomenko, M. Horowitz, C. R. Menyuk, and T. F. Carruthers, “Theoretical study of an actively mode-locked fiber laser stabilized by an intra-cavity Fabry-Perot etalon: Linear regime,” J. Opt. Soc. Am. B. 24, 1793–1802 (2007). [CrossRef]
  20. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, “Harmonically modelocked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources,” J. Opt. A: Pure Appl. Opt. 11, 1–23 (2009) [CrossRef]
  21. R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solitons in erbium fibre laser,” Electron. Lett. 27, 1257–1258 (1991). [CrossRef]
  22. J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively modelocked fiber Raman laser with 100 GHz repetition rate,” Opt. Lett. 31, 3489–3491 (2006). [CrossRef] [PubMed]
  23. D. Panasenko, P. Polynkin, A. Polynkin, J. V. Moloney, M. Mansuripur, and N. Peyghambarian, “Er-Yb femtosecond ring fiber oscillator with 1.1-W average power and GHz repetition rates,” IEEE Photon. Technol. Lett. 18, 853–855 (2006). [CrossRef]
  24. A. N. Pilipetskii, E. A. Golovchenko, and C. R. Menyuk, “Acoustic effect in passively mode-locked fiber ring lasers,” Opt. Lett. 20, 907–909 (1996). [CrossRef]
  25. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgenson, “Phase-locked, erbium-fiber-laser based frequency comb in the near infrared,” Opt. Lett., vol.  29, 250–252 (2004). [CrossRef] [PubMed]
  26. P. Pal, W. H. Knox, I. Hartl, and M. E. Fermann, “Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber,” Opt. Express 15, 12161–12166 (2007). [CrossRef] [PubMed]
  27. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser comb, Opt. Lett.,  34, 638–640 (2009). [CrossRef] [PubMed]
  28. J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009). [CrossRef] [PubMed]
  29. S. K. Sheem, “Optical fiber interferometers with [3 × 3] directional couplers: Analysis,” J. Ap. Phys. 52, 3865–3872 (1981). [CrossRef]
  30. R. W. C. Vance and J. D. Love, “Design procedures for passive planar coupled waveguide devices,” IEE Proc. Opto-Electron. 141, 231–241 (1994). [CrossRef]
  31. At the time of this writing, companies that produce 3 × 3 fiber couplers include the Shenzhen Technology Company and Rayscience Optoelectronic Innovation.
  32. R. G. Priest, “Analysis of fiber interferometer utilizing 3× 3 fiber coupler,” Trans. Micro. Theory Tech. MTT-30, 1589–1591 (1982). [CrossRef]
  33. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking, J. Opt. Soc. Amer. E,  8, 2068–2076 (1991). [CrossRef]
  34. C. Antonelli, J. Chen, and F. Kartner, “Intracavity pulse dynamics and stability for passively mode-locked lasers,” Opt. Express 15, 5919–5924 (2007). [CrossRef] [PubMed]
  35. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–995 (1993). [CrossRef]
  36. F. M. Gardner, Phaselock techniques3rd ed. (Wiley-Interscience, 2005). [CrossRef]
  37. S. T. Cundiff, J. Ye, and J. L. Hall, “Optical Frequency Synthesis Based on Mode-Locked Lasers,” Review of Scientific Instruments,  72, 3749–3771, (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited