OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23315–23326

Optimizing intracavity high harmonic generation for XUV fs frequency combs

Jane Lee, David R. Carlson, and R. Jason Jones  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23315-23326 (2011)
http://dx.doi.org/10.1364/OE.19.023315


View Full Text Article

Enhanced HTML    Acrobat PDF (1022 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Previous work has shown that use of a passive enhancement cavity designed for ultrashort pulses can enable the up-conversion of the fs frequency comb into the extreme ultraviolet (XUV) spectral region utilizing the highly nonlinear process of high harmonic generation. This promising approach for an efficient source of highly coherent light in this difficult to reach spectral region promises to be a unique tool for precision spectroscopy and temporally resolved measurements. Yet to date, this approach has not been extensively utilized due in part to the low powers so far achieved and in part due to the challenges in directly probing electronic transitions with the frequency comb itself. We report on a dramatically improved XUV frequency comb producing record power levels to date in the 50–150nm spectral region based on intracavity high harmonic generation. We measure up to 77 μW at the 11th harmonic of the fundamental (72nm) with μW levels down to the 15th harmonic (53nm). Phase-matching and related design considerations unique to intracavity high harmonic generation are discussed, guided by numerical simulations which provide insight into the role played by intracavity ionization dynamics. We further propose and analyze dual-comb spectroscopy in the XUV and show that the power levels reported here permit this approach for the first time. Dual-comb spectroscopy in this physically rich spectral region promises to enable the study of a significantly broader range of atomic and molecular spectra with unprecedented precision and accuracy.

© 2011 OSA

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Nonlinear Optics

Citation
Jane Lee, David R. Carlson, and R. Jason Jones, "Optimizing intracavity high harmonic generation for XUV fs frequency combs," Opt. Express 19, 23315-23326 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23315


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300 thz femtosecond laser comb,” Phys. Rev. Lett.84, 5102 (2000). [CrossRef] [PubMed]
  2. M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, T. Udem, T. W. Hansch, M. Abgrall, J. Grunert, I. Maksimovic, S. Bize, H. Marion, F. P. Dos Santos, P. Lemonde, G. Santarelli, P. Laurent, A. Clairon, C. Salomon, M. Haas, U. D. Jentschura, and C. H. Keitel, “New limits on the drift of fundamental constants from laboratory measurements,” Phys. Rev. Lett.92 (2004). [CrossRef] [PubMed]
  3. W. G. Rellergert, D. DeMille, R. R. Greco, M. P. Hehlen, J. R. Torgerson, and E. R. Hudson, “Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the th-229 nucleus,” Phys. Rev. Lett.104, 4 (2010). [CrossRef]
  4. B. R. Beck, J. A. Becker, P. Beiersdorfer, G. V. Brown, K. J. Moody, J. B. Wilhelmy, F. S. Porter, C. A. Kilbourne, and R. L. Kelley, “Energy splitting of the ground-state doublet in the nucleus th-229,” Phys. Rev. Lett.98, 4 (2007). [CrossRef]
  5. M. Agaker, J. Andersson, J. C. Englund, J. Rausch, J. E. Rubensson, and J. Nordgren, “Spectroscopy in the vacuum-ultraviolet,” Nature Photon.5, 248 (2011).
  6. N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J. C. Rodier, and L. Nahon, “High-resolution broad-bandwidth fourier-transform absorption spectroscopy in the vuv range down to 40 nm,” Nature Photon.5, 149 (2011). [CrossRef]
  7. R. Eramo, S. Cavalieri, C. Corsi, I. Liontos, and M. Bellini, “Method for high-resolution frequency measurements in the extreme ultraviolet regime: Random-sampling ramsey spectroscopy,” Phys. Rev. Lett.106, 213003 (2011). [CrossRef] [PubMed]
  8. D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett.105, 4 (2010). [CrossRef]
  9. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett.94, 193201 (2005). [CrossRef] [PubMed]
  10. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, “A frequency comb in the extreme ultraviolet,” Nature436, 234 (2005). [CrossRef] [PubMed]
  11. R. J. Jones and J. Ye, “Femtosecond pulse amplification by coherent addition in a passive optical cavity,” Opt. Lett.27, 1848 (2002).
  12. R. J. Jones and J. Ye, “High-repetition-rate coherent femtosecond pulse amplification with an external passive optical cavity,” Opt. Lett.29, 2812 (2004). [CrossRef] [PubMed]
  13. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett.33, 1099 (2008). [CrossRef] [PubMed]
  14. A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hansch, and T. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett.100, 253901 (2008). [CrossRef] [PubMed]
  15. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. Fermann, I. Hartl, and J. Ye, “Direct Frequency Comb Spectroscopy in the Extreme Ultraviolet,” arXiv:1109.1871v1 (2011).
  16. D. Carlson, J. Lee, J. Mongelli, E. Wright, and R. Jones, “Intracavity ionization and pulse formation in femtosecond enhancement cavities,” Optics Letters36, 2991 (2011). [CrossRef] [PubMed]
  17. T. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Cavity extreme nonlinear optics,” arXiv:1105.4195v1 (2011).
  18. S. Schiller, “Spectrometry with frequency combs,” Optics Letters27, 766 (2002). [CrossRef]
  19. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100, 013902, (2008). [CrossRef] [PubMed]
  20. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tunnermann, T. W. Hansch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett.35, 2052 (2010). [CrossRef] [PubMed]
  21. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photon.s2, 355 (2008). [CrossRef]
  22. A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett.35, 3015 (2010). [CrossRef] [PubMed]
  23. J. Paul, J. Johnson, J. Lee, and R. J. Jones, “Generation of high-power frequency combs from injection-locked femtosecond amplification cavities,” Optics Letters33, 2482 (2008). [CrossRef] [PubMed]
  24. A. L’Huillier, X. Li, and L. L.A., “Propagation effects in high-order harmonic generation,” J. Opt. Soc. B7 (1990).
  25. Fluid flow simulations provided by David Jones and TJ Hammond of University of British Columbia. .
  26. K. D. Moll, R. J. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Optics Express13, 1672 (2005). 1094–4087. [CrossRef] [PubMed]
  27. A. Gatto, N. Kaiser, S. Gunster, D. Ristau, F. Sarto, M. Trovo’, and M. Danailov, “Synchrotron radiation induced damages in optical materials,” SPIE4932, 366 (2003). [CrossRef]
  28. K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Optics Express14, 8189 (2006). [CrossRef] [PubMed]
  29. A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, T. Udem, and T. W. Hansch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted xuv generation,” Optics Express16, 6233 (2008). [CrossRef] [PubMed]
  30. P. Balcou and A. Lhuillier, “Phase-matching effects in strong-field harmonic-generation,” Physical Review A47, 1447 (1993). [CrossRef] [PubMed]
  31. D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nature Physics5, 815 (2009). [CrossRef]
  32. T. Hammond, A. K. Mills, and D. J. Jones, “Near-threshold harmonics from a femtosecond enhancement cavity-based euv source: Effects of multiple quantum pathways on spatial profile and yield,” (Submitted for publication).
  33. E. Constant, D. Garzella, P. Breger, E. Mevel, C. Dorrer, C. Le Blanc, F. Salin, and P. Agostini, “Optimizing high harmonic generation in absorbing gases: Model and experiment,” Phys. Rev. Lett.82, 1668 (1999). [CrossRef]
  34. J. Weitenberg, P. Russbuldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity,” Optics Express19, 9551 (2011). [CrossRef] [PubMed]
  35. P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett.71, 1994 (1993). [CrossRef] [PubMed]
  36. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. Lhuillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Physical Review A49, 2117 (1994). [CrossRef] [PubMed]
  37. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett.99, 263902 (2007). [CrossRef]
  38. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445, 627 (2007). [CrossRef] [PubMed]
  39. M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Applied Physics B-Lasers and Optics91, 397 (2008). [CrossRef]
  40. E. E. Eyler, D. E. Chieda, M. C. Stowe, M. J. Thorpe, T. R. Schibli, and J. Ye, “Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy,” European Physical Journal D48, 43 (2008). [CrossRef]
  41. M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knunz, N. Kolachevsky, H. A. Schussler, T. W. Hansch, and T. Udem, “Feasibility of coherent xuv spectroscopy on the 1s–2s transition in singly ionized helium,” Physical Review A79, 15 (2009). [CrossRef]
  42. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nature Photon.4, 55 (2010). [CrossRef]
  43. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express18, 7929 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited