OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23341–23349

High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit

Andrew R. J. Marshall, Pin Jern Ker, Andrey Krysa, John P. R. David, and Chee Hing Tan  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23341-23349 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1845 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High bandwidth, uncooled, Indium Arsenide (InAs) electron avalanche photodiodes (e-APDs) with unique and highly desirable characteristics are reported. The e-APDs exhibit a 3dB bandwidth of 3.5 GHz which, unlike that of conventional APDs, is shown not to reduce with increasing avalanche gain. Hence these InAs e-APDs demonstrate a characteristic of theoretically ideal electron only APDs, the absence of a gain-bandwidth product limit. This is important because gain-bandwidth products restrict the maximum exploitable gain in all conventional high bandwidth APDs. Non-limiting gain-bandwidth products up to 580 GHz have been measured on these first high bandwidth e-APDs.

© 2011 OSA

OCIS Codes
(040.1345) Detectors : Avalanche photodiodes (APDs)
(250.0040) Optoelectronics : Detectors

ToC Category:

Original Manuscript: August 19, 2011
Revised Manuscript: October 10, 2011
Manuscript Accepted: October 10, 2011
Published: November 1, 2011

Andrew R. J. Marshall, Pin Jern Ker, Andrey Krysa, John P. R. David, and Chee Hing Tan, "High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit," Opt. Express 19, 23341-23349 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. McIntyre, “Multiplication noise in uniform avalanche diodes,” IEEE Trans. Electron. Dev. 13(1), 164–168 (1966). [CrossRef]
  2. R. B. Emmons, “Avalanche-photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967). [CrossRef]
  3. B. E. A. Saleh, M. M. Hayat, and M. C. Teich, “Effect of dead space on the excess noise factor and time response of avalanche photodiodes,” IEEE Trans. Electron. Dev. 37(9), 1976–1984 (1990). [CrossRef]
  4. J. D. Beck, C.-F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001). [CrossRef]
  5. J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006). [CrossRef]
  6. J. Rothman, G. Perrais, G. Destefanis, J. Baylet, P. Castelein, and J.-P. Chamonal, “High performance characteristics in pin MW HgCdTe e-APDs,” Proc. SPIE 6542, 654219, 654219-10 (2007). [CrossRef]
  7. F. Ma, X. Li, J. Campbell, J. Beck, C.-F. Wan, and M. A. Kinch, “Monte Carlo simulations of Hg0.7Cd0.3Te avalanche photodiodes and resonance phenomenon in the multiplication noise,” Appl. Phys. Lett. 83(4), 785–787 (2003). [CrossRef]
  8. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes,” Appl. Phys. Lett. 93(11), 111107 (2008). [CrossRef]
  9. A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, “Extremely low excess noise in InAs electron avalanche photodiodes,” IEEE Photon. Technol. Lett. 21(13), 866–868 (2009). [CrossRef]
  10. A. R. J. Marshall, J. P. R. David, and C. H. Tan, “Impact ionization in InAs electron avalanche photodiodes,” IEEE Trans. Electron. Dev. 57(10), 2631–2638 (2010). [CrossRef]
  11. A. R. J. Marshall, P. Vines, P. J. Ker, J. P. R. David, and C. H. Tan, “Avalanche multiplication and excess noise in InAs electron avalanche photodiodes at 77K,” IEEE J. Quantum Electron. 47(6), 858–864 (2011). [CrossRef]
  12. G. Perrais, J. Rothman, G. Destefanis, and J.-P. Chamonal, “Impulse response time measurements in Hg0.7Cd0.3Te MWIR avalanche photodiodes,” J. Electron. Mater. 37(9), 1261–1273 (2008). [CrossRef]
  13. C. H. Tan, J. S. Ng, S. Xie, and J. P. R. David, “Potential materials for avalanche photodiodes operating above 10Gb/s,” 2009 International Conference on Computers and Devices for Communication, 2009.
  14. J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEE J. Sel. Top. Quantum Electron. 10(4), 777–787 (2004). [CrossRef]
  15. K. Kiasaleh, “Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence,” IEEE Trans. Commun. 53(9), 1455–1461 (2005). [CrossRef]
  16. J. C. Campbell, W. T. Tsang, G. J. Qua, and B. C. Johnson, “High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy,” IEEE J. Quantum Electron. 24(3), 496–500 (1988). [CrossRef]
  17. W. R. Clark, A. Margittai, J.-P. Noel, S. Jatar, H. Kim, E. Jamroz, G. Knight, and D. Thomas, “Reliable, high gain-bandwidth product InGaAs/InP avalanche photodiodes for 10Gb/s receivers,” Proc. OFC/IOOC, 96–98 (1999).
  18. T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalacnhe photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett. 36, 2033–2034 (2000).
  19. M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J. Decobert, and M. Achouche, “240-GHz Gain-bandwidth product back-side illuminated AlInAs avalanche photodiodes,” IEEE Photon. Technol. Lett. 22(18), 1373–1375 (2010). [CrossRef]
  20. C. Lenox, H. Nie, P. Yuan, G. Kinsey, A. L. Homles, B. G. Streetman, and J. C. Campbell, “Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290GHz,” IEEE Photon. Technol. Lett. 11(9), 1162–1164 (1999). [CrossRef]
  21. G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche photodiode operating at 1.55um with a gain-bandwidth product of 320GHz,” IEEE Photon. Technol. Lett. 13(8), 842–844 (2001). [CrossRef]
  22. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010). [CrossRef] [PubMed]
  23. Y. Kang, H.-D. Lui, M. Morse, M. Paniccia, M. Zadka, Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium / silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009). [CrossRef]
  24. W. S. Zaoui, H.-W. Chen, J. E. Bowers, Y. Kang, M. Morse, M. J. Paniccia, A. Pauchard, and J. C. Campbell, “Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product,” Opt. Express 17(15), 12641–12649 (2009). [CrossRef] [PubMed]
  25. A. R. J. Marshall, C. H. Tan, J. P. R. David, J. S. Ng, and M. Hopkinson, “Fabrication of InAs photodiodes with reduced surface leakage current,” Proc. SPIE 6740, 67400H, 67400H-9 (2007). [CrossRef]
  26. P. J. Ker, A. R. J. Marshall, A. B. Krysa, J. P. R. David, and C. H. Tan, “Temperature dependence of leakage current in InAs avalanche photodiodes,” IEEE J. Quantum Electron. 47(8), 1123–1128 (2011). [CrossRef]
  27. J.-W. Shi, F.-M. Kuo, and B.-R. Huang, “Zn-Diffusion InAs photodiodes on semi-insulating GaAs substrate for high speed and low dark current performance,” IEEE Photon. Technol. Lett. 23(2), 100–102 (2011). [CrossRef]
  28. G. Satyanadh, R. P. Joshi, N. Abedin, and U. Singh, “Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs,” J. Appl. Phys. 91(3), 1331–1338 (2002). [CrossRef]
  29. P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett. 50(18), 1260–1262 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited