OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23364–23376

Giant Kerr Nonlinearity, Controlled Entangled Photons and Polarization Phase Gates in Coupled Quantum-Well Structures

Chengjie Zhu and Guoxiang Huang  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23364-23376 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study linear and nonlinear propagations of probe and signal pulses in a multiple quantum-well structure with a four-level, double Λ-type configuration. We show that slow, mutually matched group velocities and giant Kerr nonlinearity of the probe and the signal pulses may be achieved with nearly vanishing optical absorption. Based on these properties we demonstrate that two-qubit quantum polarization phase gates can be constructed and highly entangled photon pairs may be produced. In addition, we show that coupled slow-light soliton pairs with very low generation power can be realized in the system.

© 2011 OSA

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Nonlinear Optics

Chengjie Zhu and Guoxiang Huang, "Giant Kerr Nonlinearity, Controlled Entangled Photons and Polarization Phase Gates in Coupled Quantum-Well Structures," Opt. Express 19, 23364-23376 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics (2cd edition) (Academic, San Diego, 2003).
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge, England, 2000).
  3. M. Fleischhauer, A. Imamoǧlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  4. Y. Wu and L. Deng, “Ultraslow Optical Solitons in a Cold Four-State Medium,” Phys. Rev. Lett. 93, 143904 (2004). [CrossRef] [PubMed]
  5. G. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E72, 016617 (2005). [CrossRef]
  6. M. D. Lukin and A. Imamoǧlu, “Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons,” Phys. Rev. Lett. 84, 1419 (2000). [CrossRef] [PubMed]
  7. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization Qubit Phase Gate in Driven Atomic Media,” Phys. Rev. Lett. 90, 197902 (2003). [CrossRef] [PubMed]
  8. D. E. Nikonov, A. Imamoglu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B59, 12212 (1999). [CrossRef]
  9. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater.5, 175–178 (2006). [CrossRef]
  10. M. Phillips and H. Wang, “Spin Coherence and Electromagnetically Induced Transparency via Exciton Correlations,” Phys. Rev. Lett. 89, 186401 (2002). [CrossRef] [PubMed]
  11. P. Palinginis, S. Crankshaw, F. Sedgwick, E.-T. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S.-L. Chuang, “Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005). [CrossRef]
  12. P. C. Ku, C. J. Chang-Hasnain, and S.-L. Chuang, “Slow light in semiconductor heterostructures,” J. Phys. D: Appl. Phys. 40, R93–R107 (2007), and references therein. [CrossRef]
  13. J. Faist, F. Capasso, A. L. Hutchinson, L. Pfeiffer, and K. W. West, “Suppression of optical absorption by electric-field-induced quantum interference in coupled potential wells,” Phys. Rev. Lett. 71, 3573 (1993). [CrossRef] [PubMed]
  14. J. Faist, C. Sirtori, F. Capasso, S.-N. Chu, L. N. Pfeiffer, and K. W. West, “Tunable Fano interference in intersubband absorption,” Opt. Lett. 21, 985–987 (1996). [CrossRef] [PubMed]
  15. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455 (1997). [CrossRef]
  16. H. Schmidt and A. Imamoglu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions” Opt. Commun. 131, 333–338 (1996). [CrossRef]
  17. H. Sun, S. Gong, Y. Niu, R. Li, S. Jin, and Z. Xu, “Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference,” Phys. Rev. B 74, 155314 (2006). [CrossRef]
  18. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast All Optical Switching via Tunable Fano Interference,” Phys. Rev. Lett. 95, 057401 (2005). [CrossRef] [PubMed]
  19. Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005). [CrossRef]
  20. X. Hao, J. Li, J. Liu, P. Song, and X. Yang, “Efficient four-wave mixing of a coupled double quantum-well nanostructure,” Phys. Lett. A 372, 2509–2513 (2008).
  21. C. Zhu and G. Huang, “Slow-light solitons in coupled asymmetric quantum wells via interband transitions,” Phys. Rev. B 80, 235408 (2009). [CrossRef]
  22. W.-X. Yang and R.-K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161 (2008). [CrossRef] [PubMed]
  23. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936 (1996). [CrossRef] [PubMed]
  24. S. E. Harris and L. V. Hau, “Nonlinear Optics at Low Light Levels,” Phys. Rev. Lett. 82, 4611 (1999). [CrossRef]
  25. Z.-B. Wang, K.-P. Marzlin, and B. Sanders, in Quantum Communications and Quantum Imaging, edited by R. E. Meyers, Y. Shih, and K. S. Deacon, Proc. of SPIE6305, 6305H1–8 (2006).
  26. H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, and D. A.B. Miller, “Coherent submillimeter-wave emission from charge oscillations in a double-well potential,” Phys. Rev. Lett. 68, 2216 (1992). [CrossRef] [PubMed]
  27. I. Waldmüller, J. Förstner, S.-C. Lee, A. Knorr, M. Woerner, K. Reimann, R. A. Kaindl, T. Elsaesser, R. Hey, and K. H. Ploog, “Optical dephasing of coherent intersubband transitions in a quasi-two-dimensional electron gas,” Phys. Rev. B 69, 205307 (2004). [CrossRef]
  28. We adopt phenomenological few-level model to study the optical response of SQWs. On the relation between such approach and microscopic theory, see N. H. Kwong, I. Rumyantsev, R. Binder, and A. L. Smirl, “Relation between phenomenological few-level models and microscopic theories of the nonlinear optical response of semiconductor quantum wells,” Phys. Rev. B 72, 235312 (2005). [CrossRef]
  29. The frequency and wavevector of the probe (signal) field in the quantum well are given by ωp + ω and kp + Kp(ω) (ωs + ω and ks + Ks(ω)), respectively. Thus ω = 0 corresponds to the center frequency of both the probe and signal fields.
  30. Y. Xue, X.-M. Su, G. W. Wang, Y. Chen, and J.-Y. Gao, “Photon switch in a quantum well by quantum interference in interband transitions,” Opt. Commun. 249, 231–237 (2005). [CrossRef]
  31. A. Neogi, “Transient interband light modulation via intersubband coupling light in undoped semiconductor quantum wells,” Opt. Commun. 133, 479–486 (1997); A. Neogi, H. Yoshida, T. Mozume, and O. Wada, “Enhancement of interband optical nonlinearity by manipulation of intersubband transitions in an undoped semiconductor quantum well,” Opt. Commun. 159, 225–229 (1999); A. Neogi, O. Wada, Y. Takahashi, and H. Kawaguchi, “Ultrashort-pulse-controlled all-optical modulation by interband and intersubband transitions in doped quantum wells,” Opt. Lett. 23, 1212–1214 (1998). [CrossRef]
  32. Because Im(Vgp,s) is much less than Re(Vgp,s), we disregard Im(Vgp,s) and take (Vgp,s)≈Re(Vgp,s) here and in the following.
  33. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000). [CrossRef]
  34. K.-P. Marzlin, Z.-B. Wang, S. A. Moiseev, and B. C. Sanders, “Uniform cross-phase modulation for nonclassical radiation pulses,” J. Opt. Soc. Am. B 27, A36–A45 (2010). [CrossRef]
  35. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited