OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23386–23399

Boundary element method for surface nonlinear optics of nanoparticles

Jouni Mäkitalo, Saku Suuriniemi, and Martti Kauranen  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23386-23399 (2011)
http://dx.doi.org/10.1364/OE.19.023386


View Full Text Article

Acrobat PDF (1969 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the frequency-domain boundary element formulation for solving surface second-harmonic generation from nanoparticles of virtually arbitrary shape and material. We use the Rao-Wilton-Glisson basis functions and Galerkin’s testing, which leads to very accurate solutions for both near and far fields. This is verified by a comparison to a solution obtained via multipole expansion for the case of a spherical particle. The frequency-domain formulation allows the use of experimentally measured linear and nonlinear material parameters or the use of parameters obtained using ab-initio principles. As an example, the method is applied to a non-centrosymmetric L-shaped gold nanoparticle to illustrate the formation of surface nonlinear polarization and the second-harmonic radiation properties of the particle. This method provides a theoretically well-founded approach for modelling nonlinear optical phenomena in nanoparticles.

© 2011 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(190.2620) Nonlinear optics : Harmonic generation and mixing
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(250.5403) Optoelectronics : Plasmonics
(290.5825) Scattering : Scattering theory
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 20, 2011
Revised Manuscript: October 14, 2011
Manuscript Accepted: October 14, 2011
Published: November 1, 2011

Citation
Jouni Mäkitalo, Saku Suuriniemi, and Martti Kauranen, "Boundary element method for surface nonlinear optics of nanoparticles," Opt. Express 19, 23386-23399 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23386


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. Y. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature337, 519–525 (1989). [CrossRef]
  2. J. E. Sipe, V. Mizrahi, and G. I. Stegeman, “Fundamental difficulty in the use of second-harmonic generation as a strictly surface probe,” Phys. Rev. B35, 9091–9094 (1987). [CrossRef]
  3. P. Guyot-Sionnest, W. Chen, and Y. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B33, 8254 (1986). [CrossRef]
  4. F. Wang, F. Rodríguez, W. Albers, R. Ahorinta, J. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80, 233402 (2009). [CrossRef]
  5. K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003). [CrossRef]
  6. H. Husu, J. Mäkitalo, R. Siikanen, G. Genty, H. Pietarinen, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Spectral control in anisotropic resonance-domain metamaterials,” Opt. Lett.36, 2375–2377 (2011). [CrossRef] [PubMed]
  7. J. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B4, 481–489 (1987). [CrossRef]
  8. S. Roke, M. Bonn, and A. Petukhov, “Nonlinear optical scattering: The concept of effective susceptibility,” Phys. Rev. B70, 115106 (2004). [CrossRef]
  9. A. de Beer, S. Roke, and J. Dadap, “Theory of optical second-harmonic and sum-frequency scattering from arbitrarily shaped particles,” J. Opt. Soc. Am. B28, 1374–1384 (2011). [CrossRef]
  10. A. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B79, 155420 (2009). [CrossRef]
  11. J. Dewitz, W. Hübner, and K. Bennemann, “Theory for nonlinear Mie-scattering from spherical metal clusters,” Zeitschrift für Physik D Atoms, Molecules and Clusters37, 75–84 (1996). [CrossRef] [PubMed]
  12. Y. Pavlyukh and W. Hübner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B70, 245434 (2004). [CrossRef]
  13. J. Dadap, J. Shan, and T. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B21, 1328–1347 (2004). [CrossRef]
  14. C. Biris and N. Panoiu, “Second harmonic generation in metamaterials based on homogeneous centrosymmetric nanowires,” Phys. Rev. B81, 195102 (2010). [CrossRef]
  15. C. Biris and N. Panoiu, “Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities,” Opt. Express18, 17165–17179 (2010). [CrossRef] [PubMed]
  16. C. Biris and N. Panoiu, “Excitation of linear and nonlinear cavity modes upon interaction of femtosecond pulses with arrays of metallic nanowires,” Appl. Phys. A pp. 1–5 (2011).
  17. L. Cao, N. Panoiu, and R. Osgood, “Surface second-harmonic generation from surface plasmon waves scattered by metallic nanostructures,” Phys. Rev. B75, 205401 (2007). [CrossRef]
  18. L. Cao, N. Panoiu, R. Bhat, and R. Osgood Jr, “Surface second-harmonic generation from scattering of surface plasmon polaritons from radially symmetric nanostructures,” Phys. Rev. B79, 235416 (2009). [CrossRef]
  19. W. Nakagawa, R.-C. Tyan, and Y. Fainman, “Analysis of enhanced second-harmonic generation in periodic nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation,” J. Opt. Soc. Am. A19, 1919–1928 (2002). [CrossRef]
  20. B. Bai and J. Turunen, “Fourier modal method for the analysis of second-harmonic generation in two-dimensionally periodic structures containing anisotropic materials,” J. Opt. Soc. Am. B24, 1105–1112 (2007). [CrossRef]
  21. T. Paul, C. Rockstuhl, and F. Lederer, “A numerical approach for analyzing higher harmonic generation in multilayer nanostructures,” J. Opt. Soc. Am. B27, 1118–1130 (2010). [CrossRef]
  22. W. Schaich, “Second harmonic generation by periodically-structured metal surfaces,” Phys. Rev. B78, 195416 (2008).
  23. Y. Zeng, W. Hoyer, J. Liu, S. Koch, and J. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B79, 235109 (2009). [CrossRef]
  24. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B25, 955–960 (2008). [CrossRef]
  25. K. Umashankar, A. Taflove, and S. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag.34, 758–766 (1986). [CrossRef]
  26. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. Garcia de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett.90, 57401 (2003). [CrossRef]
  27. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. G. D. Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14, 9988–9999 (2006). [CrossRef] [PubMed]
  28. G. Bryant, F. de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631–636 (2008). [CrossRef] [PubMed]
  29. A. Kern and O. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26, 732–740 (2009). [CrossRef]
  30. B. Gallinet and O. Martin, “Scattering on plasmonic nanostructures arrays modeled with a surface integral formulation,” Phot. Nano. Fund. Appl.8, 278–284 (2010). [CrossRef]
  31. B. Gallinet, A. Kern, and O. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A27, 2261–2271 (2010). [CrossRef]
  32. A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, “Engineering the second harmonic generation pattern from coupled gold nanowires,” J. Opt. Soc. Am. B27, 408–416 (2010). [CrossRef]
  33. M. Centini, A. Benedetti, C. Sibilia, and M. Bertolotti, “Coupled 2D Ag nano-resonator chains for enhanced and spatially tailored second harmonic generation,” Opt. Express19, 8218–8232 (2011). [CrossRef] [PubMed]
  34. T. F. Heinz, “Second-order nonlinear optical effects at surfaces and interfaces,” in Nonlinear Surface Electromagnetic Phenomena, H.-E. Ponath and G. I. Stegeman (Elsevier, Amsterdam, 1991) p. 353.
  35. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B21, 4389 (1980). [CrossRef]
  36. J. Stratton, Electromagnetic theory (New York and London: McGraw-Hill, 1941).
  37. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, vol. 93 (Springer Verlag, 1998).
  38. R. Harrington, Field computation by moment methods (Wiley-IEEE Press, 1993).
  39. S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.30, 409–418 (1982). [CrossRef]
  40. I. Hänninen, M. Taskinen, and J. Sarvas, “Singularity subtraction integral formulae for surface integral equations with RWG, rooftop and hybrid basis functions,” Prog. Elec. Res.63, 243–278 (2006). [CrossRef]
  41. J. Jackson, Classical electrodynamics (John Wiley & Sons inc., 1999).
  42. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972). [CrossRef]
  43. S. Kujala, B. Canfield, M. Kauranen, Y. Svirko, and J. Turunen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett.98, 167403 (2007). [CrossRef] [PubMed]
  44. H. Husu, J. Mäkitalo, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Particle plasmon resonances in L-shaped gold nanoparticles,” Opt. Express18, 16601–16606 (2010). [CrossRef] [PubMed]
  45. A. F. Peterson, D. R. Wilton, and R. E. Jorgenson, “Variational nature of Galerkin and non-Galerkin moment method solutions,” IEEE Trans. Antennas Propag.44, 500–503 (1996). [CrossRef]
  46. L. D. Landau and E. M. Lifshits, The electrodynamics of continuous media (Pergamon, Oxford, 1960).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited