OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23408–23419

Dual transmission filters for enhanced energy in mode-locked fiber lasers

Feng Li, Edwin Ding, J. Nathan Kutz, and P. K. A. Wai  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23408-23419 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2223 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically demonstrate that in a laser cavity mode-locked by a set of waveplates and passive polarizer, the energy performance can be increased by incorporating a second set of waveplates and polarizer in the cavity. The two nonlinear transmission functions acting in combination can be engineered so as to suppress the multi-pulsing instability responsible for limiting the single pulse per round trip energy in a myriad of mode-locked cavities. In a single parameter sweep, the energy is demonstrated to double. It is anticipated that further engineering and optimization of the transmission functions by tuning the eight waveplates, fiber birefringence, two polarizers and two lengths of transmission fiber can lead to further significant increases. Moreover, the analysis suggests a general design and engineering principle that can potentially realize the goal of making fiber based lasers directly competitive with solid state devices. The technique is feasible and easy to implement without requiring a new cavity design paradigm.

© 2011 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers, Mode Locking and Parametric Oscillation

Original Manuscript: August 30, 2011
Revised Manuscript: October 22, 2011
Manuscript Accepted: October 26, 2011
Published: November 2, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express

Feng Li, Edwin Ding, J. Nathan Kutz, and P. K. A. Wai, "Dual transmission filters for enhanced energy in mode-locked fiber lasers," Opt. Express 19, 23408-23419 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010). [CrossRef]
  2. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quant. Elec. 6, 1173–1185 (2000). [CrossRef]
  3. K. Tamura, E.P. Ippen, H.A. Haus, and L.E. Nelson, “77-fs Pulse Generation From a Stretched-Pulse Mode-Locked All-Fiber Ring Laser,” Opt. Lett. 18, 1080–1082 (1993). [CrossRef] [PubMed]
  4. K. Tamura and M. Nakazawa, “Optimizing power extraction in stretched pulse fiber ring lasers,” Appl. Phys. Lett. 67, 3691–3693 (1995). [CrossRef]
  5. G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, “All-solid-state femtosecond source at 1.55 μm,” Opt. Lett. 20, 1289–1291 (1995). [CrossRef] [PubMed]
  6. F. Ö. Ilday, J. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser cavity,” Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  7. W. H. Renninger, A. Chong, and F. W. Wise“Self-similar pulse evolution in an all-normal-dispersion laser.” Phys. Rev. A 82, 021805 (2010). [CrossRef]
  8. B. Bale and S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett. 35, 2466–2468 (2010). [CrossRef] [PubMed]
  9. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148 (2008). [CrossRef]
  10. S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14, 2099–2111 (1997). [CrossRef]
  11. B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, “Transition dynamics for multi-pulsing in mode-locked lasers,” Opt. Express 17, 23137–23146 (2009). [CrossRef]
  12. E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized Master Equation for High-Energy Passive Mode-Locking: The Sinusoidal Ginzburg-Landau Equation,” IEEE J. Quantum Electron. 47, 705–714 (2011). [CrossRef]
  13. F. Li, P. K. A. Wai, and J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B 27, 2068–2077 (2010). [CrossRef]
  14. R. Herda, O. G. Okhotnikov, E. U. Rafailov, W. Sibbett, P. Crittenden, and A. Starodumov, “Semiconductor quantum-dot saturable absorber mode-locked fiber laser,” IEEE Photon. Technol. Lett. 18, 157–159 (2006). [CrossRef]
  15. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes,” J. Lightwave Technol. 22, 51–56 (2004). [CrossRef]
  16. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directlysynthesized onto substrates and fibersand their application to mode-locked fiber lasers,” Opt. Lett. 29, 1581–1583 (2004). [CrossRef] [PubMed]
  17. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4, 803–810 (2010). [CrossRef] [PubMed]
  18. H. Zhang, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009). [CrossRef]
  19. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630–17635 (2009). [CrossRef] [PubMed]
  20. J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Opt. Express 16, 636–650 (2008). [CrossRef] [PubMed]
  21. R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed. (Addison-Wesley, Redwood City, 1989).
  22. P. G. Drazin, Nonlinear systems, (Cambridge, 1992)
  23. C. R. Menyuk, “Pulse propagation in an elliptically birefringent Kerr media,” IEEE J. Quantum Electron. 25, 2674–2682 (1989). [CrossRef]
  24. C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. 23, 174–176 (1987). [CrossRef]
  25. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71, 053809 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited