OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23444–23452

Modulation transfer spectroscopy for 87Rb atoms: theory and experiment

Heung-Ryoul Noh, Sang Eon Park, Long Zhe Li, Jong-Dae Park, and Chang-Ho Cho  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23444-23452 (2011)
http://dx.doi.org/10.1364/OE.19.023444


View Full Text Article

Enhanced HTML    Acrobat PDF (867 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We conducted a theoretical and experimental study of lineshape in modulation transfer spectroscopy for 87Rb atoms. When a linearly polarized pump beam, modulated at an angular frequency of Ω, overlaps in parallel with an unmodulated linearly polarized probe beam, combined modulated probe beams are generated via nonlinear interaction with atoms. The detected modulation transfer signals are calculated by numerically solving the complete optical Bloch equations for the 87Rb atoms without the use of any phenomenological parameters. We find that the calculated results are in good agreement with experimental results.

© 2011 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.2930) Atomic and molecular physics : Hyperfine structure
(020.3690) Atomic and molecular physics : Line shapes and shifts

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: August 30, 2011
Revised Manuscript: October 5, 2011
Manuscript Accepted: October 5, 2011
Published: November 2, 2011

Citation
Heung-Ryoul Noh, Sang Eon Park, Long Zhe Li, Jong-Dae Park, and Chang-Ho Cho, "Modulation transfer spectroscopy for 87Rb atoms: theory and experiment," Opt. Express 19, 23444-23452 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23444


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Demtröder, Laser Spectroscopy (Springer, Berlin, 1998).
  2. C. Wieman and T. W. Hänsch, “Doppler-free laser polarization spectroscopy,” Phys. Rev. Lett.36(20), 1170–1173 (1976). [CrossRef]
  3. K. L. Corwin, Z. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt.37(15), 3295–3298 (1998). [CrossRef]
  4. M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B, 41(8), 085401 (2008). [CrossRef]
  5. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett.5(1), 15–17 (1980). [CrossRef] [PubMed]
  6. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett.7(11), 537–539 (1982). [CrossRef] [PubMed]
  7. D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol.19(10), 105601 (2008). [CrossRef]
  8. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas.44(2), 155–158 (1995). [CrossRef]
  9. E. B. Kim, S. E. Park, C. Y. Park, Y. H. Park, D.-S. Yee, T. Y. Kwon, H. S. Lee, and H. Cho, “Absolute frequency measurement of F = 4 → F′ = 5 transition line of cesium using amplified optical frequency comb,” IEEE Trans. Instrum. Meas.56(2), 448–452 (2007). [CrossRef]
  10. A. Schenzle, R. G. DeVoe, and R. G. Brewer, “Phase-modulation laser spectroscopy,” Phys. Rev. A25(5), 2606–2621 (1982). [CrossRef]
  11. E. Jaatinen, “Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,” Opt. Commun.120(1–2), 91–97 (1995). [CrossRef]
  12. F. Bertinetto, P. Cordiale, G. Galzerano, and E. Bava, “Frequency stabilization of DBR diode laser against Cs absorption lines at 852 nm using the modulation transfer method,” IEEE Trans. Instrum. Meas.50(2), 490–492 (2001). [CrossRef]
  13. J. Zhang, D. Wei, C. Xie, and K. Peng, “Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum,” Opt. Express, 11(11), 1338–1344 (2003). [CrossRef] [PubMed]
  14. L. Z. Li, S. E. Park, H. R. Noh, J. D. Park, and C. H. Cho, “Modulation transfer spectroscopy for a two-level atomic system with a non-cycling transition,” J. Phys. Soc. Jpn.80(7), 074301 (2011). [CrossRef]
  15. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1960).
  16. J. Sagle, R. K. Namiotka, and J. Huennekens, “Measurement and modelling of intensity dependent absorption and transit relaxation on the cesium D1 line,” J. Phys. B29(12), 2629–2643 (1996). [CrossRef]
  17. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B41(15), 155004 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited