OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23453–23459

Repetition-frequency-tunable mode-locked surface emitting semiconductor laser between 2.78 and 7.87 GHz

Keith G. Wilcox, Adrian H. Quarterman, Harvey E. Beere, David A. Ritchie, and Anne C. Tropper  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23453-23459 (2011)
http://dx.doi.org/10.1364/OE.19.023453


View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a repetition frequency tunable, passively mode-locked vertical-external-cavity surface-emitting semiconductor laser (VECSEL) with continuous repetition frequency tuning between 2.78 and 7.87 GHz using mechanical tuning of the laser cavity length. The laser emits near-transform-limited, sub-500-fs pulses over almost an octave tuning range between 2.78 and 5 GHz. At repetition rates above 6 GHz the pulse duration increases to ~2.5 ps. Over the entire tuning range the laser emits an average output power of 40 ± 5 mW in a fundamental transverse mode. The change in pulse duration highlights a change in the dominant modelocking mechanism which forms the pulses. At high repetition frequencies the pulse duration is set by the saturable absorber recovery time. At low repetition frequencies the fluence and peak intensity on the SESAM increases to a point where the fast pulse shaping mechanisms of the optical Stark effect and carrier thermalization dominate the pulse shortening.

© 2011 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 25, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: October 23, 2011
Published: November 2, 2011

Citation
Keith G. Wilcox, Adrian H. Quarterman, Harvey E. Beere, David A. Ritchie, and Anne C. Tropper, "Repetition-frequency-tunable mode-locked surface emitting semiconductor laser between 2.78 and 7.87 GHz," Opt. Express 19, 23453-23459 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23453


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B100(1), 15–28 (2010). [CrossRef]
  2. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  3. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009). [CrossRef] [PubMed]
  4. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107(6), 063901 (2011). [CrossRef] [PubMed]
  5. R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B.28(4), 592–595 (2011). [CrossRef]
  6. J. Yu, M. Schell, M. Schulze, and D. Bimberg, “Fourier-limited 1.6-ps pulses with variable repetition rate from 1 to 26 GHz by passive mode-locking of a semiconductor laser in an external cavity,” IEEE Photon. Technol. Lett.7(5), 467–469 (1995). [CrossRef]
  7. K. G. Wilcox, Z. Mihoubi, G. J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D. A. Ritchie, and A. Tropper, “Ultrafast optical Stark mode-locked semiconductor laser,” Opt. Lett.33(23), 2797–2799 (2008). [CrossRef] [PubMed]
  8. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett.80(21), 3892–3894 (2002). [CrossRef]
  9. K. G. Wilcox, A. H. Quarterman, H. Beere, D. A. Ritchie, and A. C. Tropper, “High Peak power femtosecond pulse passively mode-locked vertical-external-cavity surface-emitting laser,” IEEE Photonics Technol. Lett.22(14), 1021–1023 (2010). [CrossRef]
  10. P. Klopp, U. Griebner, M. Zorn, A. Klehr, A. Liero, M. Weyers, and G. Erbert, “Mode-locked InGaAs-AlGaAs disk laser generating sub-200-fs pulses, pulse picking and amplification by a tapered diode amplifier,” Opt. Express17(13), 10820–10834 (2009). [CrossRef] [PubMed]
  11. P. Klopp, U. Griebner, M. Zorn, and M. Weyers, “Pulse repetition rate up to 92 GHz or pulse duration shorter than 110 fs from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.98(7), 071103 (2011). [CrossRef]
  12. M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Südmeyer, and U. Keller, “Femtosecond high-power quantum dot vertical external cavity surface emitting laser,” Opt. Express19(9), 8108–8116 (2011). [CrossRef] [PubMed]
  13. A. H. Quarterman, K. G. Wilcox, V. Apostolopoulos, Z. Mihoubi, S. P. Elsmere, I. Farrer, D. A. Ritchie, and A. Tropper, “A passively mode-locked external-cavity semiconductor laser emitting 60-fs pulses,” Nat. Photonics3(12), 729–731 (2009). [CrossRef]
  14. S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz train of sub-500-fs optical soliton-like pulses from a surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett.17(2), 267–269 (2005). [CrossRef]
  15. K. G. Wilcox, A. H. Quarterman, H. E. Beere, D. A. Ritchie, and A. C. Tropper, “Variable repetition frequency fentosecond-pulse surface emitting semiconductor laser,” Appl. Phys. Lett.99(13), 131107 (2011). [CrossRef]
  16. M. E. Barnes, Z. Mihoubi, K. G. Wilcox, A. H. Quarterman, I. Farrer, D. A. Ritchie, A. Garnache, S. Hoogland, V. Apostolopoulos, and A. C. Tropper, “Gain bandwidth characterization of surface-emitting quantum well laser gain structures for femtosecond operation,” Opt. Express18(20), 21330–21341 (2010). [CrossRef] [PubMed]
  17. F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of subpicosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett.89(14), 141107 (2006). [CrossRef]
  18. Z. Mihoubi, G. J. Daniell, K. G. Wilcox, and A. C. Tropper, “Numerical model of the optical Stark effect as a mode-locking mechanism for femotsecond vertical-external-cavity surface-emitting semiconductor lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CThF3.
  19. A. H. Quarterman, S. Carswell, G. J. Daniell, Z. Mihoubi, K. G. Wilcox, A. L. Chung, V. Apostolopoulos and A. C. Tropper “Numerical simulation of optical Stark effect saturable absorbers in mode-locked femtosecond VECSELs using a modified two-level atom model,” Opt. Express (to be published).
  20. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express14(21), 9611–9616 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited