OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23469–23474

Design of subwavelength-size, indium tin oxide (ITO)-clad optical disk cavities with quality-factors exceeding 104

Özlem Şenlik, Hwi Yoon Cheong, and Tomoyuki Yoshie  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23469-23474 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1690 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Indium tin oxide is used as a top cladding electrode of optical disk resonators with subwavelength size in all dimensions. Calculated quality (Q)-factors exceed 104 in visible wavelengths (650-670nm). The disk aspect ratio is an important parameter to optimize the resonator properties. The Q-factor and threshold material gain based on finite-difference time-domain method are optimized for eight different disk resonator optical modes. Proposed cavity designs are promising for building electrically-pumped, low-threshold nano-lasers at room temperature.

© 2011 OSA

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 15, 2011
Revised Manuscript: September 10, 2011
Manuscript Accepted: October 14, 2011
Published: November 2, 2011

Özlem Şenlik, Hwi Yoon Cheong, and Tomoyuki Yoshie, "Design of subwavelength-size, indium tin oxide (ITO)-clad optical disk cavities with quality-factors exceeding 104," Opt. Express 19, 23469-23474 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  2. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  3. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  4. J. Huang, S. H. Kim, and A. Scherer, “Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum,” Opt. Express18(19), 19581–19591 (2010). [CrossRef] [PubMed]
  5. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  6. O. Senlik, L. Tang, P. Tor-ngern, and T. Yoshie, “Optical microcavities clad by low-absorption electrode media,” IEEE Photonics J.2(5), 794–801 (2010). [CrossRef]
  7. R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films313–314(1-2), 394–397 (1998). [CrossRef]
  8. Filmetrics, “Filmetrics refractive index database” (Filmetrics, 2011). http://www.filmetrics.com/refractive-index-database .
  9. M. A. Matin, A. F. Jezierski, S. A. Bashar, D. E. Lacklison, T. M. Benson, T. S. Cheng, J. S. Roberts, T. E. Sale, J. W. Orton, C. T. Foxon, and A. A. Rezazadeh, “Optically transparent indium-tin-oxide (ITO) ohmic contacts in the fabrication of vertical-cavity surface-emitting lasers,” Electron. Lett.30(4), 318–320 (1994). [CrossRef]
  10. A. Yariv and P. Yeh, Photonics:Optical Electronics In Modern Communications (Oxford University Press, 2007), App. 2.
  11. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett.33(11), 1261–1263 (2008). [CrossRef] [PubMed]
  12. G. Hunziker, W. Knop, and C. Harder, “Gain measurements on one, two, and three strained GaInP quantum well laser diodes,” IEEE J. Quantum Electron.30(10), 2235–2238 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited