OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23475–23482

Rashba-like spin degeneracy breaking in coupled thermal antenna lattices

Kobi Frischwasser, Igor Yulevich, Vladimir Kleiner, and Erez Hasman  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23475-23482 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Observation of a spin degeneracy breaking in thermal radiation emitted from an inhomogeneous anisotropic lattice composed of coupled antennas supporting surface waves is presented. The spin degeneracy removal is manifested by a spin-dependent momentum splitting of the radiative mode which resembles the Rashba effect. The spin split dispersion arises from the inversion asymmetry of the lattice. Our experiment confirms that the spatial rate of the inhomogeneity determines the degree of the spin- dependent momentum redirection. The influence of the inversion asymmetry on the dispersion was studied by comparing the results to those produced by homogeneous lattices and characterizing the behavior of the isolated thermal antennas.

© 2011 OSA

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(240.6690) Optics at surfaces : Surface waves
(310.6628) Thin films : Subwavelength structures, nanostructures
(290.6815) Scattering : Thermal emission

ToC Category:
Optics at Surfaces

Original Manuscript: July 27, 2011
Revised Manuscript: September 27, 2011
Manuscript Accepted: September 28, 2011
Published: November 2, 2011

Kobi Frischwasser, Igor Yulevich, Vladimir Kleiner, and Erez Hasman, "Rashba-like spin degeneracy breaking in coupled thermal antenna lattices," Opt. Express 19, 23475-23482 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Zeeman, “On the influence of Magnetism on the Nature of the Light emitted by a Substance,” Philos. Mag. 43, 226–239 (1897).
  2. E. I. Rashba, “Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop,”Sov. Phys. Solid State 2, 1109 (1960).
  3. K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura, “Giant Rashba-type spin splitting in bulk BiTeI,” Nat. Mater. 10(7), 521–526 (2011). [CrossRef] [PubMed]
  4. G. Dresselhaus, “Spin–orbit coupling effects in zinc blende structures,” Phys. Rev. 100(2), 580–586 (1955). [CrossRef]
  5. R. A. Beth, “Mechanical Detection and Measurement of the Angular Momentum of Light,” Phys. Rev. 50(2), 115–125 (1936). [CrossRef]
  6. O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008). [CrossRef] [PubMed]
  7. K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, “Geometrodynamics of spinning light,” Nat. Photonics 2(12), 748–753 (2008). [CrossRef]
  8. K. Y. Bliokh, “Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium,” J. Opt. A. 11, 094009 (2009).
  9. Y. Gorodetski, S. Nechayev, V. Kleiner, and E. Hasman, “Plasmonic Aharonov-Bohm effect: Optical spin as the magnetic flux parameter,” Phys. Rev. B 82(12), 125433 (2010). [CrossRef]
  10. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett. 9(8), 3016–3019 (2009). [CrossRef] [PubMed]
  11. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008). [CrossRef] [PubMed]
  12. N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, and E. Hasman, “Geometric doppler effect: spin-split dispersion of thermal radiation,” Phys. Rev. Lett. 105(13), 136402 (2010). [CrossRef] [PubMed]
  13. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002). [CrossRef] [PubMed]
  14. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985).
  15. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009). [CrossRef]
  16. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).
  18. K. D. Ko and C. K. Toussaint., “A simple GUI for modeling the optical properties of single metal nanoparticles,” J. Quant. Spectrosc. Radiat. Transf. 110(12), 1037–1043 (2009). [CrossRef]
  19. D. H. Goldstein, Polarized Light, (CRC Press, 2011).
  20. N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett. 11(5), 2038–2042 (2011). [CrossRef] [PubMed]
  21. B. C. Hsu and J.-F. S. Van Huele, “Spin dynamics for wave packets in Rashba systems,” Phys. Rev. B 80(23), 235309 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited