OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23483–23493

Power optimization of XUV frequency combs for spectroscopy applications [Invited]

D. C. Yost, A. Cingöz, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23483-23493 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1211 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address technical impediments to the generation of high-photon flux XUV frequency combs through cavity-enhanced high harmonic generation. These difficulties arise from mirror damage, cavity nonlinearity, the intracavity plasma generated during the HHG process, and imperfect phase-matching. By eliminating or minimizing each of these effects we have developed a system capable of generating > 200 μW and delivering ~20 μW of average power for each spectrally separated harmonic (wavelengths ranging from 50 nm - 120 nm), to actual comb-based spectroscopy experiments.

© 2011 OSA

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

ToC Category:
Frequency Conversion, Combs and Nonlinear Waveguides

Original Manuscript: September 19, 2011
Revised Manuscript: October 26, 2011
Manuscript Accepted: October 27, 2011
Published: November 2, 2011

Virtual Issues
Nonlinear Optics (2011) Optical Materials Express

D. C. Yost, A. Cingöz, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, "Power optimization of XUV frequency combs for spectroscopy applications [Invited]," Opt. Express 19, 23483-23493 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. K. Allison, T. W. Wright, A. M. Stooke, C. Khurmi, J. van Tilborg, Y. Liu, R. W. Falcone, and A. Belkacem, “Femtosecond spectroscopy with vacuum ultraviolet pulse pairs,” Opt. Lett. 35(21), 3664–3666 (2010). [CrossRef] [PubMed]
  2. A. Ravasio, D. Gauthier, F. R. N. C. Maia, M. Billon, J.-P. Caumes, D. Garzella, M. Géléoc, O. Gobert, J. F. Hergott, A. M. Pena, H. Perez, B. Carré, E. Bourhis, J. Gierak, A. Madouri, D. Mailly, B. Schiedt, M. Fajardo, J. Gautier, P. Zeitoun, P. H. Bucksbaum, J. Hajdu, and H. Merdji, “Single-shot diffractive imaging with a table-top femtosecond soft x-ray laser-harmonics source,” Phys. Rev. Lett. 103(2), 028104 (2009). [CrossRef] [PubMed]
  3. Z. H. Loh and S. R. Leone, “Ultrafast strong-field dissociative ionization dynamics of CH2Br2 probed by femtosecond soft x-ray transient absorption spectroscopy,” J. Chem. Phys. 128(20), 204302 (2008). [CrossRef] [PubMed]
  4. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009). [CrossRef]
  5. D. Z. Kandula, Ch. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” Phys. Rev. Lett. 105(6), 063001 (2010). [CrossRef] [PubMed]
  6. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94(19), 193201 (2005). [CrossRef] [PubMed]
  7. Ch. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005). [CrossRef] [PubMed]
  8. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306(5704), 2063–2068 (2004). [CrossRef] [PubMed]
  9. A. Marian, M. C. Stowe, D. Felinto, and J. Ye, “Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics,” Phys. Rev. Lett. 95(2), 023001 (2005). [CrossRef] [PubMed]
  10. E. E. Eyler, D. E. Chieda, M. C. Stowe, M. J. Thorpe, T. R. Schibli, and J. Ye, “Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy,” Eur. Phys. J. D 48(1), 43–55 (2008). [CrossRef]
  11. M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried, G. Saathoff, Ch. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A. Schüssler, T. W. Hänsch, and Th. Udem, “Feasibility of coherent xuv spectroscopy on the 1S-2S transition in singly ionized helium,” Phys. Rev. A 79(5), 052505 (2009). [CrossRef]
  12. J. Lee, D. R. Carlson, and R. J. Jones, “Optimizing intracavity high harmonic generation for XUV fs frequency combs," Opt. Express 19(23), 23315–23326 (2011).
  13. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010). [CrossRef] [PubMed]
  14. A. Vernaleken, J. Weitenberg, T. Sartorius, P. Russbueldt, W. Schneider, S. L. Stebbings, M. F. Kling, P. Hommelhoff, H. D. Hoffmann, R. Poprawe, F. Krausz, T. W. Hänsch, and T. Udem, “Single-pass high-harmonic generation at 20.8 MHz repetition rate,” Opt. Lett. 36(17), 3428–3430 (2011). [CrossRef] [PubMed]
  15. C. J. Saraceno, O. H. Heckl, C. R. Baer, T. Südmeyer, and U. Keller, “Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers,” Opt. Express 19(2), 1395–1407 (2011). [CrossRef] [PubMed]
  16. A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010). [CrossRef] [PubMed]
  17. I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CThG1. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-CThG1
  18. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett. 31(17), 2532–2534 (2006). [CrossRef] [PubMed]
  19. M. E. Fermann, M. L. Stock, A. Galvanauskas, G. C. Cho, and B. C. Thomsen, “Third-order dispersion control in ultrafast Yb fiber amplifiers”, Conf. on Advanced Solid State Lasers, ASSL 2001, paper TuA3.
  20. K. Moll, R. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Opt. Express 13(5), 1672–1678 (2005). [CrossRef] [PubMed]
  21. D. C. Yost, T. R. Schibli, and J. Ye, “Efficient output coupling of intracavity high-harmonic generation,” Opt. Lett. 33(10), 1099–1101 (2008). [CrossRef] [PubMed]
  22. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, Th. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, and F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010). [CrossRef] [PubMed]
  23. Y.-Y. Yang, F. Süßmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, H.-J. Fuchs, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. L. Stebbings, and M. F. Kling, “Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses,” Opt. Express 19(3), 1954–1962 (2011). [CrossRef] [PubMed]
  24. K. D. Moll, R. J. Jones, and J. Ye, “Output coupling methods for cavity-based high-harmonic generation,” Opt. Express 14(18), 8189–8197 (2006). [CrossRef] [PubMed]
  25. A. Ozawa, A. Vernaleken, W. Schneider, I. Gotlibovych, Th. Udem, and T. W. Hänsch, “Non-collinear high harmonic generation: a promising outcoupling method for cavity-assisted XUV generation,” Opt. Express 16(9), 6233–6239 (2008). [CrossRef] [PubMed]
  26. J. Weitenberg, P. Rußbüldt, T. Eidam, and I. Pupeza, “Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity,” Opt. Express 19(10), 9551–9561 (2011). [CrossRef] [PubMed]
  27. I. Pupeza, E. E. Fill, and F. Krausz, “Low-loss VIS/IR-XUV beam splitter for high-power applications,” Opt. Express 19(13), 12108–12118 (2011). [CrossRef] [PubMed]
  28. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.) 14(3), 235–254 (1977). [CrossRef]
  29. E. Constant, D. Garzella, P. Breger, E. Mével, Ch. Dorrer, C. Le Blanc, F. Salin, and P. Agostini, “Optimizing high harmonic generation in absorbing gases: model and experiment,” Phys. Rev. Lett. 82(8), 1668–1671 (1999). [CrossRef]
  30. T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Extreme nonlinear optics in a femtosecond enhancement cavity,” Phys. Rev Lett. 107, 183903 (2011).
  31. D. R. Carlson, J. Lee, J. Mongelli, E. M. Wright, and R. J. Jones, “Intracavity ionization and pulse formation in femtosecond enhancement cavities,” Opt. Lett. 36(15), 2991–2993 (2011). [CrossRef] [PubMed]
  32. E. P. Kanter, R. Santra, C. Höhr, E. R. Peterson, J. Rudati, D. A. Arms, E. M. Dufresne, R. W. Dunford, D. L. Ederer, B. Krässig, E. C. Landahl, S. H. Southworth, and L. Young, “Characterization of the spatiotemporal evolution of laser-generated plasmas,” J. Appl. Phys. 104(7), 073307 (2008). [CrossRef]
  33. R. W. Boyd, Nonlinear Optics, Second Edition (Academic, 2003).
  34. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011). [CrossRef] [PubMed]
  35. I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, “Cavity-enhanced similariton Yb-fiber laser frequency comb: 3 x 1014 W/ cm2 peak intensity at 136 MHz,” Opt. Lett. 32(19), 2870–2872 (2007). [CrossRef] [PubMed]
  36. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008). [CrossRef]
  37. A. Ozawa, J. Rauschenberger, Ch. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. W. Hänsch, and Th. Udem, “High harmonic frequency combs for high resolution spectroscopy,” Phys. Rev. Lett. 100(25), 253901 (2008). [CrossRef] [PubMed]
  38. D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuumultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5, 815 (2009).
  39. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Accepted to Nature (2011).
  40. J. Tate, T. Auguste, H. G. Muller, P. Salières, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98(1), 013901 (2007). [CrossRef] [PubMed]
  41. L. D. Merkle, N. Koumvakalis, and M. Bass, “Laser-induced bulk damage in SiO2 at 1.064, 0.532, and 0.355 µm,” J. Appl. Phys. 55(3), 772 (1984). [CrossRef]
  42. I. J. Kim, G. H. Lee, S. B. Park, Y. S. Lee, T. K. Kim, C. H. Nam, T. Mocek, and K. Jakubczak, “Generation of submicrojoule high harmonics using a long gas jet in a two-color laser field,” Appl. Phys. Lett. 92(2), 021125 (2008). [CrossRef]
  43. E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10- µJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett. 27(21), 1920–1922 (2002). [CrossRef] [PubMed]
  44. J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse, E. Jean, P. Breger, P. Agostini, B. Carré, and P. Salières, “Extreme-ultraviolet high-order harmonic pulses in the microjoule range,” Phys. Rev. A 66(2), 021801 (2002). [CrossRef]
  45. S. Hädrich, J. Rothhardt, M. Krebs, F. Tavella, A. Willner, J. Limpert, and A. Tünnermann, “High harmonic generation by novel fiber amplifier based sources,” Opt. Express 18(19), 20242–20250 (2010). [CrossRef] [PubMed]
  46. D. Attwood, Soft X-rays and extreme ultraviolet radiation (Cambridge University Press, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited