OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23494–23503

Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator

S. Sederberg, D. Driedger, M. Nielsen, and A.Y. Elezzabi  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23494-23503 (2011)
http://dx.doi.org/10.1364/OE.19.023494


View Full Text Article

Enhanced HTML    Acrobat PDF (2624 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A silicon-based plasmonic nanoring resonator is proposed for ultrafast, all-optical switching applications. Full-wave numerical simulations demonstrate that the photogeneration of free carriers enables ultrafast switching of the device by shifting the transmission minimum of the resonator with a switching time of 3 ps. The compact 1.00 μm2 device footprint demonstrates the potential for high integration density plasmonic circuitry based on this device geometry.

© 2011 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(320.0320) Ultrafast optics : Ultrafast optics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Integrated Optics

History
Original Manuscript: September 9, 2011
Revised Manuscript: October 14, 2011
Manuscript Accepted: October 25, 2011
Published: November 3, 2011

Citation
S. Sederberg, D. Driedger, M. Nielsen, and A.Y. Elezzabi, "Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator," Opt. Express 19, 23494-23503 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440(7083), 508–511 (2006). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85(24), 5833–5836 (2004). [CrossRef]
  4. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express18(2), 1207–1216 (2010). [CrossRef] [PubMed]
  5. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402 (2003). [CrossRef] [PubMed]
  6. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8(11), 3998–4001 (2008). [CrossRef] [PubMed]
  7. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  8. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4(6), 382–387 (2010). [CrossRef]
  9. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9(2), 897–902 (2009). [CrossRef] [PubMed]
  10. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009). [CrossRef]
  11. K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A gigahertz surface magneto-plasmon optical modulator,” IEEE J. Quantum Electron.40(5), 571–579 (2004). [CrossRef]
  12. A. Y. Elezzabi, Z. Han, S. Sederberg, and V. Van, “Ultrafast all-optical modulation in silicon-based nanoplasmonic devices,” Opt. Express17(13), 11045–11056 (2009). [CrossRef] [PubMed]
  13. J. N. Caspers, N. Rotenberg, and H. M. van Driel, “Ultrafast silicon-based active plasmonics at telecom wavelengths,” Opt. Express18(19), 19761–19769 (2010). [CrossRef] [PubMed]
  14. M. V. Ermolenko, O. V. Buganov, S. A. Tikhomirov, V. V. Stankevich, S. V. Gaponenko, and A. S. Shulenkov, “Ultrafast all-optical modulator for 1.5 μm controlled by Ti:Al2O3 laser,” Appl. Phys. Lett.97(7), 073113 (2010). [CrossRef]
  15. S. Sederberg, V. Van, and A. Y. Elezzabi, “Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform,” Appl. Phys. Lett.96(12), 121101 (2010). [CrossRef]
  16. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997). [CrossRef]
  17. A. V. Krasavin and A. V. Zayats, “Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.97(4), 041107 (2010). [CrossRef]
  18. F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett.50(8), 460–462 (1987). [CrossRef]
  19. Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and W. Yun, “Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging applications,” J. Vac. Sci. Technol. B25(6), 2004 (2007). [CrossRef]
  20. M. A. Mohammad, T. Fito, J. Chen, M. Aktary, M. Stepanova, and S. K. Dew, “Interdependence of optimum exposure dose regimes and the kinetics of resist dissolution for electron beam nanolithography of polymethylmethacrylate,” J. Vac. Sci. Technol. B28(1), L1 (2010). [CrossRef]
  21. M. A. Mohammad, S. K. Dew, S. Evoy, and M. Stepanova, “Fabrication of sub-10 nm silicon carbon nitride resonators using a hydrogen silsesquioxane mask prepared by electron beam lithography,” Microelectron. Eng.88(8), 2338–2341 (2011). [CrossRef]
  22. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011). [CrossRef] [PubMed]
  23. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complimentary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011). [CrossRef]
  24. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010). [CrossRef] [PubMed]
  25. Z. Han, A. Y. Elezzabi, and V. Van, “Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform,” Opt. Lett.35(4), 502–504 (2010). [CrossRef] [PubMed]
  26. P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron.10(9), 943–948 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited