OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23544–23553

Intrinsic quality factor determination in whispering gallery mode microcavities using a single Stokes parameters measurement

Francis Vanier, Cecilia La Mela, Ahmad Hayat, and Yves-Alain Peter  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23544-23553 (2011)
http://dx.doi.org/10.1364/OE.19.023544


View Full Text Article

Enhanced HTML    Acrobat PDF (1245 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Determination of the intrinsic quality factor of a loaded whispering gallery mode microcavity can be important for many applications where the coupling conditions cannot be tuned. We propose a single-scan technique based on a Stokes parameters analysis to extract the intrinsic quality factor and therefore determine the coupling regime. We propose a simple model for this analysis and present experimental measurements, which are in very good agreement with the model.

© 2011 OSA

OCIS Codes
(260.5430) Physical optics : Polarization
(140.3945) Lasers and laser optics : Microcavities
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Lasers and Laser Optics

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Francis Vanier, Cecilia La Mela, Ahmad Hayat, and Yves-Alain Peter, "Intrinsic quality factor determination in whispering gallery mode microcavities using a single Stokes parameters measurement," Opt. Express 19, 23544-23553 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23544


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5, 591–596 (2008). [CrossRef] [PubMed]
  2. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009). [CrossRef]
  3. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, “Kilohertz optical resonances in dielectric crystal cavities,” Phys. Rev. A70, 051804(R) (2004). [CrossRef]
  4. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett.60, 289–291 (1992). [CrossRef]
  5. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett.95, 033901 (2005). [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004). [CrossRef] [PubMed]
  7. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett.21, 453–455 (1996). [CrossRef] [PubMed]
  8. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003). [CrossRef] [PubMed]
  9. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,” IEEE Photonics Technol. Lett.10, 549–551 (1998). [CrossRef]
  10. M. Sumetsky, “Optimization of optical ring resonator devices for sensing applications,” Opt. Lett.32, 2577–2579 (2007). [CrossRef] [PubMed]
  11. M. Hossein-Zadeh and K. J. Vahala, “Importance of intrinsic-Q in microring-based optical filters and dispersion-compensation devices,” IEEE Photonics Technol. Lett.19, 1045–1047 (2007). [CrossRef]
  12. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003). [CrossRef] [PubMed]
  13. B. J. J. Slagmolen, M. B. Gray, K. G. Baigent, and D. E. McClelland, “Phase-sensitive reflection technique for characterization of a Fabry-Perot interferometer,” Appl. Opt.39, 3638–3643 (2000). [CrossRef]
  14. C. R. Locke, D. Stuart, E. N. Ivanov, and A. N. Luiten, “A simple technique for accurate and complete characterisation of a Fabry-Perot cavity,” Opt. Express17, 21935–21943 (2009). [CrossRef] [PubMed]
  15. Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B25, 2073–2080 (2008). [CrossRef]
  16. T. Ito and Y. Kokubun, “Nondestructive measurement of propagation loss and coupling efficiency in microring resonator filters using filter responses,” Jpn. J. Appl. Phys.43, 1002–1005 (2004). [CrossRef]
  17. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, and N. Morris, “Morphology-dependent resonances of a microsphere-optical fiber system,” Opt. Lett.21, 695–697 (1996). [CrossRef] [PubMed]
  18. P. Bianucci, C. R. Fietz, J. W. Robertson, G. Shvets, and C.-K. Shih, “Whispering gallery mode microresonators as polarization converters,” Opt. Lett.32, 2224–2226 (2007). [CrossRef] [PubMed]
  19. D. Goldstein, Polarized Light (Marcel Dekker, Inc., New York, 2003), 2nd ed. [CrossRef]
  20. M. J. Humphrey, E. Dale, A. T. Rosenberger, and D. K. Bandy, “Calculation of optimal fiber radius and whispering-gallery mode spectra for a fiber-coupled microsphere,” Opt. Commun.271, 124–131 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 3 Fig. 2
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited