OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23573–23580

Hybridization Induced Transparency in composites of metamaterials and atomic media

Peter Weis, Juan Luis Garcia-Pomar, René Beigang, and Marco Rahm  »View Author Affiliations


Optics Express, Vol. 19, Issue 23, pp. 23573-23580 (2011)
http://dx.doi.org/10.1364/OE.19.023573


View Full Text Article

Enhanced HTML    Acrobat PDF (2119 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report hybridization induced transparency (HIT) in a composite medium consisting of a metamaterial and a dielectric. We develop an analytic model that explains HIT by coherent coupling between the hybridized local fields of the metamaterial and the dielectric or an atomic system in general. In a proof-of-principle experiment, we evidence HIT in a split ring resonator metamaterial that is coupled to α-lactose monohydrate. Both, the analytic model and numerical calculations confirm and explain the experimental observations. HIT can be considered as a hybrid analogue to electromagnetically induced transparency (EIT) and plasmon-induced transparency (PIT).

© 2011 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(220.4000) Optical design and fabrication : Microstructure fabrication
(270.1670) Quantum optics : Coherent optical effects
(160.3918) Materials : Metamaterials
(230.4555) Optical devices : Coupled resonators
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Metamaterials

Citation
Peter Weis, Juan Luis Garcia-Pomar, René Beigang, and Marco Rahm, "Hybridization Induced Transparency in composites of metamaterials and atomic media," Opt. Express 19, 23573-23580 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-23-23573


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of left-handed metamaterials,” Phys. Rev. Lett.91, 037401 (2003). [CrossRef] [PubMed]
  2. E. Poutrina, D. Huang, and D. R. Smith, “Analysis of nonlinear electromagnetic metamaterials,” New Journal of Physics12, 093010 (2010). [CrossRef]
  3. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nature Photonics2, 351–354 (2008). [CrossRef]
  4. M. Wegener, J. L. Garcia-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express16, 19785–19798 (2008). [CrossRef] [PubMed]
  5. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature466, 735–738 (2010). [CrossRef] [PubMed]
  6. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444, 597–600 (2006). [CrossRef] [PubMed]
  7. H.-T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices,” Opt. Express32, 1620–1622 (2007).
  8. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express17, 819–827 (2009). [CrossRef] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314, 977–980 (2006). [CrossRef] [PubMed]
  10. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101, 047401 (2008). [CrossRef] [PubMed]
  11. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit,” Nature Materials8, 758–762 (2009). [CrossRef] [PubMed]
  12. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science332, 1407–1410 (2011). [CrossRef] [PubMed]
  13. A. Artar, A. A. Yanik, and H. Altug, “Multispectral Plasmon Induced Transparency in Coupled Meta-Atoms,” Nano Lett.11, 1685–1689 (2011). [CrossRef] [PubMed]
  14. S.-D. Liu, Z. Yang, R.-P. Liu, and X.-Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express19, 15363–15370 (2011). [CrossRef] [PubMed]
  15. S. I. Bozhevolnyi, A. B Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New Journal of Physics13, 023034 (2011). [CrossRef]
  16. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics3, 157–162 (2009). [CrossRef]
  17. S. A. Cummer and D. Schurig, “One path to acoustic cloaking,” New Journal of Physics9, 45 (2007). [CrossRef]
  18. K.-J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991). [CrossRef] [PubMed]
  19. M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005). [CrossRef]
  20. C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science327, 1495–1497 (2010). [CrossRef] [PubMed]
  21. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express18, 23633–23645 (2010). [CrossRef] [PubMed]
  22. D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express19, 13700–13706 (2011). [CrossRef] [PubMed]
  23. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature471, 204–208 (2011). [CrossRef] [PubMed]
  24. F. Neubrech, D. Weber, D. Enders, T. Nagao, and A. Pucci, “Antenna Sensing of Surface Phonon Polaritons,” J. Phys. Chem. C114, 7299–7301 (2010). [CrossRef]
  25. D. J. Shelton, I. Brener, J. C. Ginn, M. B. Sinclair, D. W. Peters, K. R. Coffey, and G. D. Boreman, “Strong Coupling between Nanoscale Metamaterials and Phonons,” Nano Lett.11, 2104–2108 (2011). [CrossRef] [PubMed]
  26. S. Linden, J. Kuhl, and H. Giessen, “Controlling the Interaction between Light and Gold Nanoparticles: Selective Suppression of Extinction,” Phys. Rev. Lett.20, 4688–4691 (2001). [CrossRef]
  27. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80, 195415 (2009).
  28. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Materials9, 707–715 (2010). [CrossRef]
  29. B. Tang, L. Dai, and C. Jiang, “Electromagnetically induced transparency in hybrid plasmonic-dielectric system,” Opt. Express19, 628–637 (2011). [CrossRef] [PubMed]
  30. D. Allis, A. Fedor, T. Korter, J. Bjarnason, and E. Brown, “Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory,” Chemical Physics Letters440, 203–209 (2007). [CrossRef]
  31. E. Brown, J. Bjarnson, A. Fedor, and T. Korter, “On the strong and narrow absorption signature in lactose at 0.53 THz,” Appl. Phys. Lett.90, 061908 (2007). [CrossRef]
  32. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New Journal of Physics12, 043017 (2010). [CrossRef]
  33. R. Lefort, V. Caron, J.-F. Willart, and M. Descamps, “Mutarotational kinetics and glass transition of lactose,” Solid State Comm.140, 329–334 (2006). [CrossRef]
  34. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95, 203901 (2005). [CrossRef] [PubMed]
  35. J. A. Hutchison, D. M. O’Carroll, T. Schwartz, C. Genet, and T. W. Ebbesen, “Absorption-Induced Transparency,” Angewandte Chemie50, 2085–2089 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited