OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 23 — Nov. 7, 2011
  • pp: 23590–23600

Controlling an actively-quenched single photon detector with bright light

Sebastien Sauge, Lars Lydersen, Andrey Anisimov, Johannes Skaar, and Vadim Makarov  »View Author Affiliations

Optics Express, Vol. 19, Issue 23, pp. 23590-23600 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1759 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We control using bright light an actively-quenched avalanche single-photon detector. Actively-quenched detectors are commonly used for quantum key distribution (QKD) in the visible and near-infrared range. This study shows that these detectors are controllable by the same attack used to hack passively-quenched and gated detectors. This demonstrates the generality of our attack and its possible applicability to eavsdropping the full secret key of all QKD systems using avalanche photodiodes (APDs). Moreover, the commercial detector model we tested (PerkinElmer SPCM-AQR) exhibits two new blinding mechanisms in addition to the previously observed thermal blinding of the APD, namely: malfunctioning of the bias voltage control circuit, and overload of the DC/DC converter biasing the APD. These two new technical loopholes found just in one detector model suggest that this problem must be solved in general, by incorporating generally imperfect detectors into the security proof for QKD.

© 2011 OSA

OCIS Codes
(270.5570) Quantum optics : Quantum detectors
(040.1345) Detectors : Avalanche photodiodes (APDs)
(270.5568) Quantum optics : Quantum cryptography

ToC Category:

Original Manuscript: August 5, 2011
Revised Manuscript: October 13, 2011
Manuscript Accepted: October 17, 2011
Published: November 4, 2011

Sebastien Sauge, Lars Lydersen, Andrey Anisimov, Johannes Skaar, and Vadim Makarov, "Controlling an actively-quenched single photon detector with bright light," Opt. Express 19, 23590-23600 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Commercial QKD systems are available from at least two companies: ID Quantique (Switzerland), http://www.idquantique.com ; MagiQ Technologies (USA), http://www.magiqtech.com .
  2. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3, 481–486 (2007). [CrossRef]
  3. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009). [CrossRef]
  4. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982). [CrossRef]
  5. D. Mayers, “Advances in cryptology,” in Proceedings of Crypto’96, vol. 1109, N. Koblitz, ed. (Springer, New York, 1996), vol. 1109, pp. 343–357.
  6. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 4, 325–360 (2004).
  7. Ø. Marøy, L. Lydersen, and J. Skaar, “Security of quantum key distribution with arbitrary individual imperfections,” Phys. Rev. A 82, 032337 (2010). [CrossRef]
  8. M. Koashi, “Simple security proof of quantum key distribution based on complementarity,” New J. Phys. 11, 045018 (2009). [CrossRef]
  9. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686–689 (2010). [CrossRef]
  10. C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys. 13, 013043 (2011). [CrossRef]
  11. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express 18, 27938–27954 (2010). [CrossRef]
  12. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics 4, 800–801 (2010). [CrossRef]
  13. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Reply to ‘Avoiding the blinding attack in QKD’,” Nat. Photonics 4, 801 (2010). [CrossRef]
  14. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett. 98, 231104 (2011). [CrossRef]
  15. L. Lydersen, V. Makarov, and J. Skaar, “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography’,” arXiv:1106.3756 [quant-ph].
  16. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Reply to “Comment on ‘Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography’”,” arXiv:1109.3149 [quant-ph].
  17. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun. 2, 349 (2011). [CrossRef] [PubMed]
  18. PerkinElmer SPCM-AQR single photon counting module, data sheet, PerkinElmer (2005).
  19. V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt. 52, 691–705 (2005). [CrossRef]
  20. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in “Proc. IEEE International Conference on Computers, Systems, and Signal Processing” (IEEE Press, New York, Bangalore, India, 1984), pp. 175–179.
  21. J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt. 41, 2435–2444 (1994). [CrossRef]
  22. M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, “Daylight operation of a free space, entanglement-based quantum key distribution system,” New J. Phys. 11, 045007 (2009). [CrossRef]
  23. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10 km in daylight and at night,” New J. Phys. 4, 43 (2002). [CrossRef]
  24. C. Erven, C. Couteau, R. Laflamme, and G. Weihs, “Entangled quantum key distribution over two free-space optical links,” Opt. Express 16, 16840–16853 (2008). [CrossRef] [PubMed]
  25. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51, 1267–1288 (2004).
  26. T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999). [CrossRef]
  27. M. Hillery, “Quantum cryptography with squeezed states,” Phys. Rev. A 61, 022309 (2000). [CrossRef]
  28. M. D. Reid, “Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations,” Phys. Rev. A 62, 062308 (2000). [CrossRef]
  29. M. Heid and N. Lütkenhaus, “Security of coherent-state quantum cryptography in the presence of Gaussian noise,” Phys. Rev. A 76, 022313 (2007). [CrossRef]
  30. S. Fossier, E. Diamanti, T. Debuisschert, A. Villing, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New J. Phys. 11, 045023 (2009). [CrossRef]
  31. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001). [CrossRef]
  32. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002). [CrossRef]
  33. V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys. 11, 065003 (2009). [CrossRef]
  34. R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett. 93, 071104 (2008). [CrossRef]
  35. R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, “Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths,” Appl. Phys. Lett. 91, 201114 (2007).
  36. id210 advanced system for single photon detection, data sheet, ID Quantique (2011), http://www.idquantique.com/images/stories/PDF/id210-single-photon-counter/id210-specs.pdf (accessed on 1 August 2011).
  37. H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993). [PubMed]
  38. PerkinElmer SPCM-AQ4C single photon counting module array, data sheet, PerkinElmer (2005).
  39. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber-optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004). [CrossRef]
  40. L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A 83, 032306 (2011). [CrossRef]
  41. L. Lydersen, N. Jain, C. Wittmann, Ø. Marøy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A 84, 032320 (2011). [CrossRef]
  42. H.-K. Lo, M. Curty, and B. Qi, “Measurement device independent quantum key distribution,” arXiv:1109.1473 [quant-ph].
  43. S. L. Braunstein and S. Pirandola, “Side-channel free quantum key distribution,” arXiv:1109.2330 [quant-ph].
  44. L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” arXiv:1106.2396 [quant-ph].

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited