OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23658–23663

Ultra-small silicon waveguide coupler switch using gap-variable mechanism

Yuta Akihama, Yoshiaki Kanamori, and Kazuhiro Hane  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 23658-23663 (2011)
http://dx.doi.org/10.1364/OE.19.023658


View Full Text Article

Enhanced HTML    Acrobat PDF (1133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Submicron-wide silicon waveguide coupler with gap variable mechanism is proposed for a compact optical waveguide switch. Two freestanding silicon waveguides are placed parallel with a submicron gap. The gap is changed by electrostatic comb-drive micro-actuators to control the coupling coefficient of the coupler. The fabricated device consisted of the silicon waveguides of 400 nm in width and 260 nm in thickness. The total size of the switch was 100 μm wide and 150 μm long. Decreasing the gap between the waveguides to 110 nm, the output intensity at drop port became a maximum while the output intensity at through port became a minimum. The extension ratio of the switch output was 17 dB for the waveguide displacement of 300 nm.

© 2011 OSA

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(250.5300) Optoelectronics : Photonic integrated circuits
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Optoelectronics

History
Original Manuscript: August 4, 2011
Revised Manuscript: October 9, 2011
Manuscript Accepted: October 31, 2011
Published: November 7, 2011

Citation
Yuta Akihama, Yoshiaki Kanamori, and Kazuhiro Hane, "Ultra-small silicon waveguide coupler switch using gap-variable mechanism," Opt. Express 19, 23658-23663 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-23658


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006). [CrossRef]
  2. A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-oninsulator substrate,” Jpn. J. Appl. Phys.40(Part 2, No. 4B), L383–L385 (2001). [CrossRef]
  3. S. Janz, P. Cheben, D. Dalacu, A. Delge, A. Densmore, B. Lamontagne, M.-J. Picard, E. Post, J. H. Schmid, P. Waldron, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonic elements for integration on the silicon-on-insulator waveguide platform,” IEEE J. Sel. Top. Quantum Electron.12(6), 1402–1415 (2006). [CrossRef]
  4. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Optical directional coupler based on Si-wire waveguides,” IEEE Photon. Technol. Lett.17(3), 585–587 (2005). [CrossRef]
  5. P. Koonath, T. Indukuri, and B. Jalali, “Monolithic 3-D silicon photonics,” J. Lightwave Technol.24(4), 1796–1804 (2006). [CrossRef]
  6. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60μm2 size based on Si photonic wire waveguides,” Electron. Lett.41(14), 801–802 (2005). [CrossRef]
  7. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron.12(6), 1371–1379 (2006). [CrossRef]
  8. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  9. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro26(2), 58–66 (2006). [CrossRef]
  10. E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett.92(10), 101110 (2008). [CrossRef]
  11. J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron.13(2), 202–208 (2007). [CrossRef]
  12. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express16(19), 14421–14428 (2008). [CrossRef] [PubMed]
  13. T. Ikeda, K. Takahashi, Y. Kanamori, and K. Hane, “Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator,” Opt. Express18(7), 7031–7037 (2010). [CrossRef] [PubMed]
  14. X. Chew, G. Zhou, F. S. Chau, and J. Deng, “Nanomechanically tunable photonic crystal resonators utilizing triple-beam coupled nanocavities,” IEEE Photon. Technol. Lett.23(18), 1310–1312 (2011). [CrossRef]
  15. X. Chew, G. Zhou, F. S. Chau, J. Deng, X. Tang, and Y. C. Loke, “Dynamic tuning of an optical resonator through MEMS-driven coupled photonic crystal nanocavities,” Opt. Lett.35(15), 2517–2519 (2010). [CrossRef] [PubMed]
  16. M. W. Pruessner, K. Amarnath, M. Datta, D. P. Kelly, S. Kanakaraju, P.-T. Ho, and R. Ghodssi, “InP-based optical waqveguide MEMS switches with evanescent coupling mechanism,” J. Micromech. Syst.14(5), 1070–1081 (2005). [CrossRef]
  17. M.-C. M. Lee, D. D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett.18(2), 358–360 (2006). [CrossRef]
  18. K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron comb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron.56(4), 991–995 (2009). [CrossRef]
  19. K. Okamoto, Basis of Optical Waveguides Coronasha Ltd. (Tokyo) (1992).
  20. E. A. J. Marcatili, “Dielectric rectangular waveguide and dielectric coupler for integrated optics,” Bell Syst. Tech. J.47(7), 2071–2102 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited