OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23698–23705

Characterization of the surface plasmon polariton band gap in an Ag/SiO2/Ag T-shaped periodical structure

Cheng-Wen Cheng, Mohammed Nadhim Abbas, Min-Hsiung Shih, and Yia-Chung Chang  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 23698-23705 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2952 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, the localized surface plasmon polariton (LSPP) band gap of an Ag/SiO2/Ag asymmetric T-shaped periodical structure is demonstrated and characterized. The Ag/SiO2/Ag asymmetric T-shaped periodical structure was designed and fabricated to exhibit the LSPP modes in an infrared wavelength regime, and its band gap can be manipulated through the structural geometry. The LSPP band gap was observed experimentally with the absorbance spectra and its angle dependence characterized with different incident angles. Such a T-shaped structure with a LSPP band gap can be widely exploited in various applications, such as emitters and sensors.

© 2011 OSA

OCIS Codes
(260.3060) Physical optics : Infrared
(160.5293) Materials : Photonic bandgap materials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: September 7, 2011
Revised Manuscript: October 14, 2011
Manuscript Accepted: October 14, 2011
Published: November 7, 2011

Cheng-Wen Cheng, Mohammed Nadhim Abbas, Min-Hsiung Shih, and Yia-Chung Chang, "Characterization of the surface plasmon polariton band gap in an Ag/SiO2/Ag T-shaped periodical structure," Opt. Express 19, 23698-23705 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  2. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).
  3. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000). [CrossRef] [PubMed]
  4. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, “Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12(6), 1090–1096 (2004). [CrossRef] [PubMed]
  5. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  7. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett. 23(15), 1149–1151 (1998). [CrossRef] [PubMed]
  8. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter 54(9), 6227–6244 (1996). [CrossRef] [PubMed]
  9. A. Kocabas, S. Seckin Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77(19), 195130 (2008). [CrossRef]
  10. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, “Waveguiding in surface plasmon polariton band gap structures,” Phys. Rev. Lett. 86(14), 3008–3011 (2001). [CrossRef] [PubMed]
  11. F. Wu, D. Han, X. Hu, X. Liu, and J. Zi, “Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting,” J. Phys. Condens. Matt. 21(18), 185010 (2009). [CrossRef] [PubMed]
  12. A. Kocabas, S. S. Senlik, and A. Aydinli, “Slowing down surface plasmons on a moiré surface,” Phys. Rev. Lett. 102(6), 063901 (2009). [CrossRef] [PubMed]
  13. R. Marani, V. Marrocco, M. Grande, G. Morea, A. D'Orazio, and V. Petruzzelli, “Enhancement of Extraordinary Optical Transmission in a Double Heterostructure Plasmonic Bandgap Cavity,” Plasmonics1–8 (2011) (Online First).
  14. S. Balci, M. Karabiyik, A. Kocabas, C. Kocabas, and A. Aydinli, “Coupled Plasmonic Cavities on Moire Surfaces,” Plasmonics 5(4), 429–436 (2010). [CrossRef]
  15. T. Okamoto, J. Simonen, and S. Kawata, “Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach,” Phys. Rev. B 77(11), 115425 (2008). [CrossRef]
  16. A. J. Benahmed and C.-M. Ho, “Bandgap-assisted surface-plasmon sensing,” Appl. Opt. 46(16), 3369–3375 (2007). [CrossRef] [PubMed]
  17. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004). [CrossRef]
  18. T.-J. Wang and C.-W. Hsieh, “Phase interrogation of localized surface plasmon resonance biosensors based on electro-optic modulation,” Appl. Phys. Lett. 91(11), 113903 (2007). [CrossRef]
  19. S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J.-P. Pellaux, T. Gresch, M. Fischer, and J. Faist, “Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range,” Opt. Express 17(1), 293–303 (2009). [CrossRef] [PubMed]
  20. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  21. Y.-H. Ye, Y.-W. Jiang, M.-W. Tsai, Y.-T. Chang, C.-Y. Chen, D.-C. Tzuang, Y.-T. Wu, and S.-C. Lee, “Localized surface plasmon polaritons in Ag/SiO2/Ag plasmonic thermal emitter,” Appl. Phys. Lett. 93(3), 033113 (2008). [CrossRef]
  22. M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98(12), 121116 (2011). [CrossRef]
  23. M. N. Abbas, Y.-C. Chang, and M. H. Shih, “Plasmon-polariton band structures of asymmetric T-shaped plasmonic gratings,” Opt. Express 18(3), 2509–2514 (2010). [CrossRef] [PubMed]
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  25. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995). [CrossRef]
  26. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996). [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  28. Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser, and C. Sirtori, “Optical properties of metal-dielectric-metal microcavities in the THz frequency range,” Opt. Express 18(13), 13886–13907 (2010). [CrossRef] [PubMed]
  29. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006). [CrossRef]
  30. C.-W. Cheng, M. N. Abbas, Z.-C. Chang, M.-H. Shih, C.-M. Wang, M.-C. Wu, and Y.-C. Chang, “Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO₂/Ag T-shaped array,” Opt. Lett. 36(8), 1440–1442 (2011). [CrossRef] [PubMed]
  31. B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B 95(1), 97–103 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited