OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23743–23750

Engineering antenna radiation patterns via quasi-conformal mappings

Carlos García-Meca, Alejandro Martínez, and Ulf Leonhardt  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 23743-23750 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2678 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use a combination of conformal and quasi-conformal mappings to engineer isotropic electromagnetic devices that modify the omnidirectional radiation pattern of a point source. For TE waves, the designed devices are also non-magnetic. The flexibility offered by the proposed method is much higher than that achieved with conformal mappings. As a result, it is shown that complex radiation patterns can be achieved, which can combine high directivity in a desired number of arbitrary directions and isotropic radiation in other specified angular ranges. In addition, this technique enables us to control the power radiated in each direction to a certain extent. The obtained results are valid for any part of the spectrum. The potential of this method is illustrated with some examples. Finally, we study the frequency dependence of the considered devices and propose a practical dielectric implementation.

© 2011 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(160.3918) Materials : Metamaterials

ToC Category:
Physical Optics

Original Manuscript: August 1, 2011
Revised Manuscript: September 12, 2011
Manuscript Accepted: September 16, 2011
Published: November 8, 2011

Carlos García-Meca, Alejandro Martínez, and Ulf Leonhardt, "Engineering antenna radiation patterns via quasi-conformal mappings," Opt. Express 19, 23743-23750 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Martínez, M. A. Piqueras, and J. Martí, “Generation of highly directional beam by k-space filtering using a metamaterial flat slab with a small negative index of refraction,” Appl. Phys. Lett. 89(13), 131111 (2006). [CrossRef]
  2. A. Martínez, R. García, A. Hakansson, M. A. Piqueras, and J. Sánchez-Dehesa, “Electromagnetic beaming from omnidirectional sources by inverse design,” Appl. Phys. Lett. 92(5), 051105 (2008). [CrossRef]
  3. J. Li, A. Salandrino, and N. Engheta, “Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas,” Phys. Rev. B 79(19), 195104 (2009). [CrossRef]
  4. Y. Chen, P. Lodahl, and A. F. Koenderink, “Dynamically reconfigurable directionality of plasmon-based single photon sources,” Phys. Rev. B 82(8), 081402 (2010). [CrossRef]
  5. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010). [CrossRef] [PubMed]
  6. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun 2, 267 (2011). [CrossRef] [PubMed]
  7. U. Leonhardt and T. G. Philbin, Geometry and Light: The Science of Invisibility (Dover, 2010).
  8. F. Kong, B.-I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, “Planar focusing antenna design by using coordinate transformation technology,” Appl. Phys. Lett. 91(25), 253509 (2007). [CrossRef]
  9. W. X. Jiang, T. J. Cui, H. F. Ma, X. Y. Zhou, and Q. Cheng, “Cylindrical-to-plane-wave conversion via embedded optical transformation,” Appl. Phys. Lett. 92(26), 261903 (2008). [CrossRef]
  10. Y. Luo, J. Zhang, L. Ran, H. Chen, and J. A. Kong, “Controlling the emission of electromagnetic source,” PIERS 4(7), 795–800 (2008). [CrossRef]
  11. N. Kundtz, D. A. Roberts, J. Allen, S. Cummer, and D. R. Smith, “Optical source transformations,” Opt. Express 16(26), 21215–21222 (2008). [CrossRef] [PubMed]
  12. B.-I. Popa, J. Allen, and S. A. Cummer, “Conformal array design with transformation electromagnetics,” Appl. Phys. Lett. 94(24), 244102 (2009). [CrossRef]
  13. P.-H. Tichit, S. N. Burokur, and A. de Lustrac, “Ultradirective antenna via transformation optics,” J. Appl. Phys. 105(10), 104912 (2009). [CrossRef]
  14. P.-H. Tichit, S. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83(15), 155108 (2011). [CrossRef]
  15. U. Leonhardt and T. Tyc, “Superantenna made of transformation media,” New J. Phys. 10(11), 115026 (2008). [CrossRef]
  16. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  17. J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, “Conformal mappings to achieve simple material parameters for transformation optics devices,” Opt. Express 18(1), 244–252 (2010). [CrossRef] [PubMed]
  18. M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, “Designing optical elements from isotropic materials by using transformation optics,” Phys. Rev. A 81(3), 033837 (2010). [CrossRef]
  19. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008). [CrossRef] [PubMed]
  20. Z. Chang, X. Zhou, J. Hu, and G. Hu, “Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries,” Opt. Express 18(6), 6089–6096 (2010). [CrossRef] [PubMed]
  21. J. Li, S. Han, S. Zhang, G. Bartal, and X. Zhang, “Designing the Fourier space with transformation optics,” Opt. Lett. 34(20), 3128–3130 (2009). [CrossRef] [PubMed]
  22. D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23(3), 468–478 (2006). [CrossRef]
  23. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited