OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23782–23789

Coherent magnetic plasmon modes in a contacting gold nano-sphere chain on a gold Slab

K. N. Chen, H. Liu, S. M. Wang, Y. J. Zheng, C. Zhu, Y. Wang, and S. N. Zhu  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 23782-23789 (2011)
http://dx.doi.org/10.1364/OE.19.023782


View Full Text Article

Enhanced HTML    Acrobat PDF (2171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A coupled magnetic resonator waveguide, composed of a contacting gold nanosphere chain on a gold slab, is proposed and investigated. A broadband coherent magnetic plasmon mode can be excited in this one dimensional nanostructure. By employing the Lagrangian formalism and the Fourier transform method, the dispersion properties of the wave vector and group velocity of the magnetic plasmon mode are investigated. Small group velocity can be obtained from this system which can be applied as subwavelength slow wave waveguides.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 31, 2011
Revised Manuscript: September 26, 2011
Manuscript Accepted: October 10, 2011
Published: November 8, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
K. N. Chen, H. Liu, S. M. Wang, Y. J. Zheng, C. Zhu, Y. Wang, and S. N. Zhu, "Coherent magnetic plasmon modes in a contacting gold nano-sphere chain on a gold Slab," Opt. Express 19, 23782-23789 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-23782


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003). [CrossRef] [PubMed]
  2. N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111(6), 3913–3961 (2011). [CrossRef] [PubMed]
  3. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett.23(17), 1331–1333 (1998). [CrossRef] [PubMed]
  4. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B62(24), R16356 (2000). [CrossRef]
  5. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B67(20), 205402 (2003). [CrossRef]
  6. J. R. Krenn, “Nanoparticle waveguides: Watching energy transfer,” Nat. Mater.2(4), 210–211 (2003). [CrossRef] [PubMed]
  7. C. Girard and R. Quidant, “Near-field optical transmittance of metal particle chain waveguides,” Opt. Express12(25), 6141–6146 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-25-6141 . [CrossRef] [PubMed]
  8. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express15(26), 17482–17493 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17482 . [CrossRef] [PubMed]
  9. K. H. Fung and C. T. Chan, “Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis,” Opt. Lett.32(8), 973–975 (2007). [CrossRef] [PubMed]
  10. X. M. Bendana and F. J. García de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express17(21), 18826–18835 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-21-18826 . [CrossRef] [PubMed]
  11. A. Alù, P. A. Belov, and N. Engheta, “Coupling and guided propagation along parallel chains of plasmonic nanoparticles,” New J. Phys.13(3), 033026 (2011). [CrossRef]
  12. K. H. Fung, R. C. Tang, and C. T. Chan, “Analytical properties of the plasmon decay profile in a periodic metal-nanoparticle chain,” Opt. Lett.36(12), 2206–2208 (2011). [CrossRef] [PubMed]
  13. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  14. E. Shamonina, V. Kalinin, K. H. Ringhofer, and L. Solymar, “Magnetoinductive waves in one, two, and three dimensions,” J. Appl. Phys.92(10), 6252–6261 (2002). [CrossRef]
  15. O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, “Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell,” Phys. Rev. B73(22), 224406 (2006). [CrossRef]
  16. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, J. M. Steele, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies,” Phys. Rev. Lett.97(24), 243902 (2006). [CrossRef] [PubMed]
  17. H. Liu, Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Coupled magnetic plasmons in metamaterials,” Physica Status Solidi B246(7), 1397–1406 (2009). [CrossRef]
  18. H. Liu, T. Li, Q. J. Wang, Z. H. Zhu, S. M. Wang, J. Q. Li, S. N. Zhu, Y. Y. Zhu, and X. Zhang, “Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators,” Phys. Rev. B79(2), 024304 (2009). [CrossRef]
  19. C. Zhu, H. Liu, S. M. Wang, T. Li, J. X. Cao, Y. J. Zheng, L. Li, Y. Wang, S. N. Zhu, and X. Zhang, “Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain,” Opt. Express18(25), 26268–26273 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-25-26268 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited