OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23790–23799

Snapshot phase sensitive scatterometry based on double-channel spectral carrier frequency concept

Daesuk Kim, Hyunsuk Kim, Robert Magnusson, Yong Jai Cho, Won Chegal, and Hyun Mo Cho  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 23790-23799 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectroscopic ellipsometry is one of the most important measurement schemes used in the optical nano-metrology for not only thin film measurement but also nano pattern 3D structure measurement. In this paper, we propose a novel snap shot phase sensitive normal incidence spectroscopic ellipsometic scheme based on a double-channel spectral carrier frequency concept. The proposed method can provide both Ψ(λ) and Δ(λ) only by using two spectra acquired simultaneously through the double spectroscopic channels. We show that the proposed scheme works well experimentally by measuring a binary grating with nano size 3D structure. We claim that the proposed scheme can provide a snapshot spectroscopic ellipsometric parameter measurement capability with moderate accuracy.

© 2011 OSA

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 31, 2011
Manuscript Accepted: October 17, 2011
Published: November 8, 2011

Daesuk Kim, Hyunsuk Kim, Robert Magnusson, Yong Jai Cho, Won Chegal, and Hyun Mo Cho, "Snapshot phase sensitive scatterometry based on double-channel spectral carrier frequency concept," Opt. Express 19, 23790-23799 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Huang and F. L. Terry., “Spectroscopic ellipsometry and reflectometry from gratings (Scatterometry) for critical dimension measurement and in situ, real-time process monitoring,” Thin Solid Films 455-456, 828–836 (2004). [CrossRef]
  2. X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular Spectroscopic Scatterometry,” IEEE Trans. Semicond. Manuf. 14(2), 97–111 (2001). [CrossRef]
  3. B. S. Stutzman, H. Huang, and F. L. Terry., “Two-channel spectroscopic reflectometry for in situ monitoring of blanket and patterned structures during reactive ion etching,” J. Vac. Sci. Technol. B 18(6), 2785–2793 (2000). [CrossRef]
  4. H. Huang, W. Kong, and F. L. Terry., “Normal-incidence spectroscopic ellipsometry for critical dimension monitoring,” Appl. Phys. Lett. 78(25), 3983–3985 (2001). [CrossRef]
  5. W. Yang, J. Hu, R. Lowe-Webb, R. Korlahalli, D. Shivaprasad, H. Sasano, W. Liu, and D. S. Mui, “Line-profile and critical dimension measurements using a normal incidence optical metrology system ,” in Advanced Semiconductor Manufacturing 2002 IEEE/SEMI Conference and Workshop (IEEE, 2002), pp. 119–124.
  6. A. Sezginer, “Scatterometry by phase sensitive reflectometer,” U.S. Patent no. 6,985,232 B2 (Jan. 10, 2006).
  7. M. G. Moharam, E. Grann, D. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary grating,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  8. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave anlysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. 12(5), 1077–1086 (1995). [CrossRef]
  9. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). [CrossRef]
  10. Y. Ohtsuka and K. Oka, “Contour mapping of the spatiotemporal state of polarization of light,” Appl. Opt. 33(13), 2633–2636 (1994). [CrossRef] [PubMed]
  11. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999). [CrossRef] [PubMed]
  12. D. G. Abdelsalam, R. Magnusson, and D. Kim, “Single-shot, dual-wavelength digital holography based on polarizing separation,” Appl. Opt. 50(19), 3360–3368 (2011). [CrossRef] [PubMed]
  13. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction,” Opt. Lett. 24(18), 1314–1316 (1999). [CrossRef] [PubMed]
  14. D. Kim, S. Kim, H. J. Kong, and Y. Lee, “Measurement of the thickness profile of a transparent thin film deposited upon a pattern structure with an acousto-optic tunablefilter,” Opt. Lett. 27(21), 1893–1895 (2002). [CrossRef] [PubMed]
  15. K. Oka and T. Kato, “Spectroscopic polarimetry with a channeled spectrum,” Opt. Lett. 24(21), 1475–1477 (1999). [CrossRef] [PubMed]
  16. The Levenberg-Marquardt algorithm is available as lsqnonlin function by a commercial S/W MATLAB.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited