OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23809–23817

Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide

Eric D. Diebold, Nick K. Hon, Zhongwei Tan, Jason Chou, Todd Sienicki, Chao Wang, and Bahram Jalali  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 23809-23817 (2011)
http://dx.doi.org/10.1364/OE.19.023809


View Full Text Article

Enhanced HTML    Acrobat PDF (1372 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ability to control chromatic dispersion is paramount in applications where the optical pulsewidth is critical, such as chirped pulse amplification and fiber optic communications. Typically, devices used to generate large amounts (>100 ps/nm) of chromatic dispersion are based on diffraction gratings, chirped fiber Bragg gratings, or dispersion compensating fiber. Unfortunately, these dispersive elements suffer from one or more of the following restrictions: (i) limited operational bandwidth, (ii) limited total dispersion, (iii) low peak power handling, or (iv) large spatial footprint. Here, we introduce a new type of tunable dispersive device, which overcomes these limitations by leveraging the large modal dispersion of a multimode waveguide in combination with the angular dispersion of diffraction gratings to create chromatic dispersion. We characterize the device’s dispersion, and demonstrate its ability to stretch a sub-picosecond optical pulse to nearly 2 nanoseconds in 20 meters of multimode optical fiber. Using this device, we also demonstrate single-shot, time-wavelength atomic absorption spectroscopy at a repetition rate of 90.8 MHz.

© 2011 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(260.2030) Physical optics : Dispersion
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.7150) Ultrafast optics : Ultrafast spectroscopy
(320.7160) Ultrafast optics : Ultrafast technology
(130.2035) Integrated optics : Dispersion compensation devices

ToC Category:
Ultrafast Optics

History
Original Manuscript: September 26, 2011
Revised Manuscript: October 21, 2011
Manuscript Accepted: October 23, 2011
Published: November 8, 2011

Citation
Eric D. Diebold, Nick K. Hon, Zhongwei Tan, Jason Chou, Todd Sienicki, Chao Wang, and Bahram Jalali, "Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide," Opt. Express 19, 23809-23817 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-23809


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun.56(3), 219–221 (1985). [CrossRef]
  2. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys.78(2), 309–371 (2006). [CrossRef]
  3. M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science264(5161), 917–924 (1994). [CrossRef] [PubMed]
  4. A. H. Zewail, “Femtochemistry: atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A104(24), 5660–5694 (2000). [CrossRef]
  5. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  6. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998). [CrossRef]
  7. M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl.10(1), 18–28 (1998). [CrossRef]
  8. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett.16(1), 42–44 (1991). [CrossRef] [PubMed]
  9. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008). [CrossRef]
  10. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature450(7172), 1054–1057 (2007). [CrossRef] [PubMed]
  11. F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech.47(7), 1309–1314 (1999). [CrossRef]
  12. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol.21(12), 3085–3103 (2003). [CrossRef]
  13. W. J. Caputi, “Stretch: A time-transformation technique,” IEEE Trans. Aerosp. Electron. Syst.AES-7(2), 269–278 (1971). [CrossRef]
  14. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994). [CrossRef]
  15. C. V. Bennett and B. H. Kolner, “Upconversion time microscope demonstrating 103 x magnification of femtosecond waveforms,” Opt. Lett.24(11), 783–785 (1999). [CrossRef] [PubMed]
  16. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature456(7218), 81–84 (2008). [CrossRef] [PubMed]
  17. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009). [CrossRef] [PubMed]
  18. A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett.98(10), 101107 (2011). [CrossRef]
  19. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall, Upper Saddle River, NJ, 1998).
  20. W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt.14(7), 1538–1542 (1975). [CrossRef] [PubMed]
  21. D. Gloge, “Optical Power Flow in Multimode Fibers,” Bell Syst. Tech. J.51, 1767 (1972).
  22. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett.20(8), 940–942 (1995). [CrossRef] [PubMed]
  23. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008). [CrossRef]
  24. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett.35(19), 1661–1662 (1999). [CrossRef]
  25. D. R. Solli, S. Gupta, and B. Jalali, “Optical phase recovery in the dispersive Fourier transform,” Appl. Phys. Lett.95(23), 231108 (2009). [CrossRef]
  26. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009). [CrossRef]
  27. W. B. Jones, Introduction to Optical Fiber Communication Systems (Oxford University Press, New York, 1998).
  28. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron.5(9), 454–458 (1969). [CrossRef]
  29. O. E. Martinez, “3000 times grating compressor with positive group-velocity dispersion - application to fiber compensation in 1.3-1.6 μm region,” IEEE J. Quantum Electron.23(1), 59–64 (1987). [CrossRef]
  30. M. Y. Shverdin, F. Albert, S. G. Anderson, S. M. Betts, D. J. Gibson, M. J. Messerly, F. V. Hartemann, C. W. Siders, and C. P. J. Barty, “Chirped-pulse amplification with narrowband pulses,” Opt. Lett.35(14), 2478–2480 (2010). [CrossRef] [PubMed]
  31. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002). [CrossRef] [PubMed]
  32. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.25(7), 442–444 (2000). [CrossRef] [PubMed]
  33. A. Galvanauskas, “Mode-scalable fiber-based chirped pulse amplification systems,” IEEE J. Sel. Top. Quantum Electron.7(4), 504–517 (2001). [CrossRef]
  34. L. Chi-Hung, C. Guoqing, L. Natasha, G. Almantas, G. Doug, J. Nick and T. Kanishka, “Effectively single-mode chirally-coupled core fiber,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper ME2.
  35. H. Bulow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightwave Technol.26(1), 158–167 (2008). [CrossRef]
  36. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol.25(8), 2033–2043 (2007). [CrossRef]
  37. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express15(5), 2120–2126 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited