OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23831–23844

In vivo depth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT

Roman V. Kuranov, Shams Kazmi, Austin B. McElroy, Jeffrey W. Kiel, Andrew K. Dunn, Thomas E. Milner, and Timothy Q. Duong  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 23831-23844 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microvasculature hemoglobin oxygen saturation (SaO2) is important in the progression of various pathologies. Non-invasive depth-resolved measurement of SaO2 levels in tissue microvasculature has the potential to provide early biomarkers and a better understanding of the pathophysiological processes allowing improved diagnostics and prediction of disease progression. We report proof-of-concept in vivo depth-resolved measurement of SaO2 levels in selected 30 µm diameter arterioles in the murine brain using Dual-Wavelength Photothermal (DWP) Optical Coherence Tomography (OCT) with 800 nm and 770 nm photothermal excitation wavelengths. Depth location of back-reflected light from a target arteriole was confirmed using Doppler and speckle contrast OCT images. SaO2 measured in a murine arteriole with DWP-OCT is linearly correlated (R2=0.98) with systemic SaO2 values recorded by a pulse-oximeter. DWP-OCT are steadily lower (10.1%) than systemic SaO2 values except during pure oxygen breathing. DWP-OCT is insensitive to OCT intensity variations and is a candidate approach for in vivo depth-resolved quantitative imaging of microvascular SaO2 levels.

© 2011 OSA

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.1030) Spectroscopy : Absorption

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 21, 2011
Revised Manuscript: September 19, 2011
Manuscript Accepted: September 19, 2011
Published: November 9, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Roman V. Kuranov, Shams Kazmi, Austin B. McElroy, Jeffrey W. Kiel, Andrew K. Dunn, Thomas E. Milner, and Timothy Q. Duong, "In vivodepth-resolved oxygen saturation by dual-wavelength photothermal (DWP) OCT," Opt. Express 19, 23831-23844 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407(6801), 249–257 (2000). [CrossRef] [PubMed]
  2. P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature 438(7070), 932–936 (2005). [CrossRef] [PubMed]
  3. R. A. Linsenmeier and C. M. Yancey, “Effects of hyperoxia on the oxygen distribution in the intact cat retina,” Invest. Ophthalmol. Vis. Sci. 30(4), 612–618 (1989). [PubMed]
  4. L. Padnick-Silver, J. J. Kang Derwent, E. Giuliano, K. Narfström, and R. A. Linsenmeier, “Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration,” Invest. Ophthalmol. Vis. Sci. 47(8), 3683–3689 (2006). [CrossRef] [PubMed]
  5. D. Y. Yu, S. J. Cringle, and E. N. Su, “Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia,” Invest. Ophthalmol. Vis. Sci. 46(12), 4728–4733 (2005). [CrossRef] [PubMed]
  6. R. N. Glud, N. B. Ramsing, J. K. Gundersen, and I. Klimant, “Planar optrodes: a new tool for fine scale measurements of two-dimensional O-2 distribution in benthic communities,” Mar. Ecol. Prog. Ser. 140, 217–226 (1996). [CrossRef]
  7. C. Y. Yu, N. M. Boyd, S. J. Cringle, V. A. Alder, and D. Y. Yu, “Oxygen distribution and consumption in rat lower incisor pulp,” Arch. Oral Biol. 47(7), 529–536 (2002). [CrossRef] [PubMed]
  8. H. Y. Cheng, G. Nair, T. A. Walker, M. K. Kim, M. T. Pardue, P. M. Thulé, D. E. Olson, and T. Q. Duong, “Structural and functional MRI reveals multiple retinal layers,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17525–17530 (2006). [CrossRef] [PubMed]
  9. B. A. Berkowitz, R. A. Kowluru, R. N. Frank, T. S. Kern, T. C. Hohman, and M. Prakash, “Subnormal retinal oxygenation response precedes diabetic-like retinopathy,” Invest. Ophthalmol. Vis. Sci. 40(9), 2100–2105 (1999). [PubMed]
  10. T. Q. Duong, M. T. Pardue, P. M. Thulé, D. E. Olson, H. Y. Cheng, G. Nair, Y. X. Li, M. Kim, X. D. Zhang, and Q. Shen, “Layer-specific anatomical, physiological and functional MRI of the retina,” NMR Biomed. 21(9), 978–996 (2008). [CrossRef] [PubMed]
  11. A. Karni, G. Meyer, P. Jezzard, M. M. Adams, R. Turner, and L. G. Ungerleider, “Functional MRI evidence for adult motor cortex plasticity during motor skill learning,” Nature 377(6545), 155–158 (1995). [CrossRef] [PubMed]
  12. P. J. Koopmans, M. Barth, and D. G. Norris, “Layer-specific BOLD activation in human V1,” Hum. Brain Mapp. 31(9), 1297–1304 (2010). [CrossRef] [PubMed]
  13. K. R. Denninghoff, M. H. Smith, A. Lompado, and L. W. Hillman, “Retinal venous oxygen saturation and cardiac output during controlled hemorrhage and resuscitation,” J. Appl. Physiol. 94(3), 891–896 (2003). [PubMed]
  14. M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47(2), 179–191 (2002). [CrossRef] [PubMed]
  15. P. L. Madsen and N. H. Secher, “Near-infrared oximetry of the brain,” Prog. Neurobiol. 58(6), 541–560 (1999). [CrossRef] [PubMed]
  16. M. G. Sowa, J. R. Mansfield, G. B. Scarth, and H. H. Mantsch, “Noninvasive assessment of regional and temporal variations in tissue oxygenation by near-infrared spectroscopy and imaging,” Appl. Spectrosc. 51(2), 143–151 (1997). [CrossRef]
  17. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett. 28(1), 28–30 (2003). [CrossRef] [PubMed]
  18. D. Izhaky, D. A. Nelson, Z. Burgansky-Eliash, and A. Grinvald, “Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals,” Jpn. J. Ophthalmol. 53(4), 345–351 (2009). [CrossRef] [PubMed]
  19. R. D. Shonat and A. C. Kight, “Oxygen tension imaging in the mouse retina,” Ann. Biomed. Eng. 31(9), 1084–1096 (2003). [CrossRef] [PubMed]
  20. R. Zuckerman, J. E. Cheasty, and Y. P. Wang, “Optical mapping of inner retinal tissue PO2,” Curr. Eye Res. 12(9), 809–825 (1993). [CrossRef] [PubMed]
  21. A. S. Golub, M. A. Tevald, and R. N. Pittman, “Phosphorescence quenching microrespirometry of skeletal muscle in situ,” Am. J. Physiol. Heart Circ. Physiol. 300(1), H135–H143 (2011). [CrossRef] [PubMed]
  22. A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, “Microvascular and tissue oxygen gradients in the rat mesentery,” Proc. Natl. Acad. Sci. U.S.A. 95(12), 6590–6595 (1998). [CrossRef] [PubMed]
  23. L. W. Lo, C. J. Koch, and D. F. Wilson, “Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: a phosphor with general application for measuring oxygen concentration in biological systems,” Anal. Biochem. 236(1), 153–160 (1996). [CrossRef] [PubMed]
  24. G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nat. Med. 3(2), 177–182 (1997). [CrossRef] [PubMed]
  25. M. Shahidi, J. Wanek, N. P. Blair, and M. Mori, “Three-dimensional mapping of chorioretinal vascular oxygen tension in the rat,” Invest. Ophthalmol. Vis. Sci. 50(2), 820–825 (2009). [CrossRef] [PubMed]
  26. M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, “Feasibility of noninvasive imaging of chorioretinal oxygenation,” Ophthalmic Surg. Lasers Imaging 35(5), 415–422 (2004). [PubMed]
  27. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009). [CrossRef] [PubMed]
  28. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000). [CrossRef] [PubMed]
  29. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography,” Opt. Lett. 28(16), 1436–1438 (2003). [CrossRef] [PubMed]
  30. C. W. Lu, C. K. Lee, M. T. Tsai, Y. M. Wang, and C. C. Yang, “Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography,” Opt. Lett. 33(5), 416–418 (2008). [CrossRef] [PubMed]
  31. J. Yi and X. Li, “Estimation of oxygen saturation from erythrocytes by high-resolution spectroscopic optical coherence tomography,” Opt. Lett. 35(12), 2094–2096 (2010). [CrossRef] [PubMed]
  32. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, “Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography,” Opt. Lett. 30(9), 1015–1017 (2005). [CrossRef] [PubMed]
  33. F. E. Robles, S. Chowdhury, and A. Wax, “Assessing hemoglobin concentration using spectroscopic optical coherence tomography for feasibility of tissue diagnostics,” Biomed. Opt. Express 1(1), 310–317 (2010). [CrossRef] [PubMed]
  34. L. Kagemann, G. Wollstein, M. Wojtkowski, H. Ishikawa, K. A. Townsend, M. L. Gabriele, V. J. Srinivasan, J. G. Fujimoto, and J. S. Schuman, “Spectral oximetry assessed with high-speed ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 12(4), 041212 (2007). [CrossRef] [PubMed]
  35. D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009). [CrossRef] [PubMed]
  36. R. V. Kuranov, J. Qiu, A. B. McElroy, A. Estrada, A. Salvaggio, J. Kiel, A. K. Dunn, T. Q. Duong, and T. E. Milner, “Depth-resolved blood oxygen saturation measurement by dual-wavelength photothermal (DWP) optical coherence tomography,” Biomed. Opt. Express 2(3), 491–504 (2011). [CrossRef] [PubMed]
  37. R. V. Kuranov, A. B. McElroy, N. Kemp, S. Baranov, J. Taber, M. D. Feldman, and T. E. Milner, “Gas-cell referenced swept source phase sensitive optical coherence tomography,” IEEE Photon. Technol. Lett. 22(20), 1524–1526 (2010). [CrossRef]
  38. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005). [CrossRef] [PubMed]
  39. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  40. A. J. Welch and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, Laser, Photonics, and Electro-Optics (Plenum Press, 1995).
  41. S. Prahl, “Optical Absorption of Hemoglobin” (1999), retrieved http://omlc.ogi.edu/spectra/hemoglobin/ .
  42. W. A. Craft and L. H. Moe, “The hemoglobin level of pigs at various ages,” J. Anim. Sci. 12, 127–131 (1934).
  43. P. J. Drew, A. Y. Shih, J. D. Driscoll, P. M. Knutsen, P. Blinder, D. Davalos, K. Akassoglou, P. S. Tsai, and D. Kleinfeld, “Chronic optical access through a polished and reinforced thinned skull,” Nat. Methods 7(12), 981–984 (2010). [CrossRef] [PubMed]
  44. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009). [CrossRef] [PubMed]
  45. Z. P. Chen, T. E. Milner, S. Srinivas, T. Lindmo, D. Dave, and J. S. Nelson, “Optical Doppler tomography for noninvasive imaging of in vivo blood flow,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, Proceedings Of, V. V. Tuchin, H. Podbielska, B. Ovryn, and A. Katzir, eds. (1997), pp. 112–118.
  46. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003). [CrossRef] [PubMed]
  47. J. K. Barton and S. Stromski, “Flow measurement without phase information in optical coherence tomography images,” Opt. Express 13(14), 5234–5239 (2005). [CrossRef] [PubMed]
  48. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008). [CrossRef] [PubMed]
  49. E. Vovenko, “Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats,” Pflugers Arch. 437(4), 617–623 (1999). [CrossRef] [PubMed]
  50. H. El-Kashef and M. A. Atia, “Wavelength and temperature dependence properties of human blood-serum,” Opt. Laser Technol. 31(2), 181–189 (1999). [CrossRef]
  51. C. M. Rovainen, D. B. Wang, and T. A. Woolsey, “Strobe EPI-illumination of fluorescent beads indicates similar velocities and wall shear rates in brain arterioles of newborn and adult mice,” Microvasc. Res. 43(2), 235–239 (1992). [CrossRef] [PubMed]
  52. Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974). [CrossRef] [PubMed]
  53. M. C. Skala, M. J. Crow, A. Wax, and J. A. Izatt, “Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres,” Nano Lett. 8(10), 3461–3467 (2008). [CrossRef] [PubMed]
  54. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008). [CrossRef] [PubMed]
  55. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005). [CrossRef] [PubMed]
  56. V. M. Gelikonov, G. V. Gelikonov, and D. V. Sabanov, “Optical-fiber multiplexer for wavelengths of 1.3 and 0.64 micrometer,” J. Opt. Technol. 67(2), 157–160 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited