OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23867–23877

Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays

Evangelos Th. Papaioannou, Vassilios Kapaklis, Emil Melander, Björgvin Hjörvarsson, Spiridon D. Pappas, Piotr Patoka, Michael Giersig, Paul Fumagalli, Antonio Garcia-Martin, and Georgios Ctistis  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 23867-23877 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1595 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The influence of surface plasmons on the magneto-optic activity in a two-dimensional hexagonal array is addressed. The experiments were performed using hexagonal array of circular holes in a ferromagnetic Ni film. Well pronounced troughs are observed in the optical reflectivity, resulting from the presence of surface plasmons. The surface plasmons are found to strongly enhance the magneto-optic response (Kerr rotation), as compared to a continuous film of the same composition. The influence of the hexagonal symmetry of the pattern on the coupling between the plasmonic excitations is demonstrated, using optical diffraction measurements and theoretical calculations of the magneto-optic and of the angular dependence of the optical activity.

© 2011 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optics at Surfaces

Original Manuscript: August 22, 2011
Revised Manuscript: October 3, 2011
Manuscript Accepted: October 24, 2011
Published: November 9, 2011

Evangelos Th. Papaioannou, Vassilios Kapaklis, Emil Melander, Björgvin Hjörvarsson, Spiridon D. Pappas, Piotr Patoka, Michael Giersig, Paul Fumagalli, Antonio Garcia-Martin, and Georgios Ctistis, "Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays," Opt. Express 19, 23867-23877 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010). [CrossRef]
  2. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, G. A. Venu, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 4, 1–7 (2011).
  3. J. F. Torrado, J. B. González-Díaz, M. U. González, A. García-Martín, and G. Armelles, “Magneto-optical effects in interacting localized and propagating surface plasmon modes,” Opt. Express 18, 15635–15642 (2010). [CrossRef] [PubMed]
  4. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31, 1085–1087 (2006). [CrossRef] [PubMed]
  5. B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 pb m-2 using an integrated plasmonic antenna,” Nat. Photonics 4, 484–488 (2010). [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  7. H. Raether, Surface Plasmons (Springer-VerlagBerlin Heidelberg, 1988).
  8. J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Åkerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341–2347 (2011). [CrossRef]
  9. E. T. Papaioannou, V. Kapaklis, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, E. Ferreiro-Vila, and G. Ctistis, “Magneto-optic enhancement and magnetic properties in fe antidot films with hexagonal symmetry,” Phys. Rev. B 81, 054424 (2010). [CrossRef]
  10. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1–6 (2009). [CrossRef]
  11. J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in fe antidot arrays,” Phys. Status Solidi (RRL) 4, 271–273 (2010). [CrossRef]
  12. J. B. Gonzalez-Diaz, A. Garcia-Martin, G. Armelles, D. Navas, M. Vazquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19, 2643–2647 (2007). [CrossRef]
  13. D. M. Newman, M. Wears, R. J. Matelon, and I. R. Hooper, “Magneto-optic behaviour in the presence of surface plasmons,” J. Phys. Condens. Matter 20, 345230 (2008). [CrossRef]
  14. P. Poulopoulos, V. Kapaklis, P. E. Jonsson, E. T. Papaioannou, A. Delimitis, S. D. Pappas, D. Trachylis, and C. Politis, “Positive surface and perpendicular magnetic anisotropy in natural nanomorphous ni/nio multilayers,” Appl. Phys. Lett. 96, 202503 (2010). [CrossRef]
  15. R. Saiki, A. Kaduwela, M. Sagurton, J. Osterwalder, D. Friedman, C. Fadley, and C. Brundle, “X-ray photoelectron diffraction and low-energy electron diffraction study of the interaction of oxygen with the ni(001) surface: c(2 2) to saturated oxide,” Surf. Sci. 282, 33–61 (1993). [CrossRef]
  16. E. T. Papaioannou, M. Angelakeris, N. K. Flevaris, P. Fumagalli, C. Mueller, A. Troupis, A. Spanou, V. Karoutsos, P. Poulopoulos, V. Kapaklis, and C. Politis, “Magnetism and magneto-optics of nanocrystalline ni/pt multilayers grown by e-beam evaporation at room temperature,” J. Appl. Phys. 101, 023913 (2007). [CrossRef]
  17. A. García-Martín, G. Armelles, and S. Pereira, “Light transport in photonic crystals composed of magneto-optically active materials,” Phys. Rev. B 71, 205116 (2005). [CrossRef]
  18. S. Visnovsk, V. Parzek, M. Nvlt, P. Kielar, V. Prosser, and R. Krishnan, “Magneto-optical kerr spectra of nickel,” J. Magn. Magnetic Mater. 127, 135 – 139 (1993). [CrossRef]
  19. Palik, Handbook of Optical Constants of Solids Part II (Academic Press, New York, 1985).
  20. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  21. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]
  22. A. K. Zvezdin and V. A. Kotov, Modern magnetooptics and magnetooptical materials (IOP Publishing, 1997). [CrossRef]
  23. P. M. Oppeneer, T. Maurer, J. Sticht, and J. Kübler, “Ab initio calculated magneto-optical kerr effect of ferro-magnetic metals: Fe and Ni,” Phys. Rev. B 45, 10924–10933 (1992). [CrossRef]
  24. P. Fumagalli, C. Spaeth, U. Rudiger, and R. J. Gambino, “A new magneto-optic enhancement effect in macroscopic ferrimagnets,” IEEE Trans. Magn. 31, 3319–3324 (1995). [CrossRef]
  25. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007). [CrossRef] [PubMed]
  26. S. A. Maier, Plasmonics : Fundamentals and Applications (Springer Science + Business Media LLC, 2007).
  27. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935). [CrossRef]
  28. Y. M. Strelniker and D. J. Bergman, “Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field,” Phys. Rev. B 77, 205113 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited