OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23878–23888

Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10−11

Sho Okubo, Hirotaka Nakayama, Kana Iwakuni, Hajime Inaba, and Hiroyuki Sasada  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 23878-23888 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1389 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We determine the absolute frequencies of 56 rotation-vibration transitions of the ν3 band of CH4 from 88.2 to 90.5 THz with a typical uncertainty of 2 kHz corresponding to a relative uncertainty of 2.2 × 10−11 over an average time of a few hundred seconds. Saturated absorption lines are observed using a difference-frequency-generation source and a cavity-enhanced absorption cell, and the transition frequencies are measured with a fiber-laser-based optical frequency comb referenced to a rubidium atomic clock linked to the international atomic time. The determined value of the P(7) F2(2) line is consistent with the International Committee for Weights and Measures recommendation within the uncertainty.

© 2011 OSA

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6390) Spectroscopy : Spectroscopy, molecular
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:

Original Manuscript: September 2, 2011
Revised Manuscript: October 28, 2011
Manuscript Accepted: October 31, 2011
Published: November 9, 2011

Sho Okubo, Hirotaka Nakayama, Kana Iwakuni, Hajime Inaba, and Hiroyuki Sasada, "Absolute frequency list of theν3-band transitions of methane at a relative uncertainty level of 10−11," Opt. Express 19, 23878-23888 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. Hall, C. J. Bordé, and K. Uehara, “Direct optical resolution of the recoil effect using saturated absorption spectroscopy,” Phys. Rev. Lett. 37(20), 1339–1342 (1976). [CrossRef]
  2. C. Daussy, T. Marrel, A. Amy-Klein, C. T. Nguyen, C. J. Bordé, and C. Chardonnet, “Limit on the parity nonconserving energy difference between the enantiomers of a chiral molecule by laser spectroscopy,” Phys. Rev. Lett. 83(8), 1554–1557 (1999). [CrossRef]
  3. M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59(1), 741–769 (2008). [CrossRef] [PubMed]
  4. B. Darquié, C. Stoeffler, A. Shelkovnikov, C. Daussy, A. Amy-Klein, C. Chardonnet, S. Zrig, L. Guy, J. Crassous, P. Soulard, P. Asselin, T. R. Huet, P. Schwerdtfeger, R. Bast, and T. Saue, “Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy,” Chirality 22(10), 870–884 (2010). [CrossRef] [PubMed]
  5. C. Daussy, M. Guinet, A. Amy-Klein, K. Djerroud, Y. Hermier, S. Briaudeau, ChJ. Bordé, and C. Chardonnet, “Direct determination of the Boltzmann constant by an optical method,” Phys. Rev. Lett. 98(25), 250801 (2007). [CrossRef] [PubMed]
  6. G. Casa, A. Castrillo, G. Galzerano, R. Wehr, A. Merlone, D. Di Serafino, P. Laporta, and L. Gianfrani, “Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant,” Phys. Rev. Lett. 100(20), 200801 (2008). [CrossRef] [PubMed]
  7. P. Jensen and P. R. Bunker, eds., Computational molecular spectroscopy, (John-Wiley and Sons Inc., New York, 2000).
  8. G. Guelachvili and K. Narahari Rao, Handbook of Infrared Standards (Academic, Orlando, Fla., 1986). G. Guelachvili and K. Narahari Rao, Handbook of Infrared Standards II (Academic, Orlando, Fla., 1993).
  9. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40(2), 103–133 (2003). [CrossRef]
  10. S. Svanberg, Atomic and molecular spectroscopy: Basic aspects and practical applications, 4th edition (Springer Verlag, Berlin, 2004).
  11. J. Tennyson, Astronomical spectroscopy: An introduction to the atomic and molecular physics of astronomical spectra, (World Scientific Publishing Co. Inc., Singapore, 2010).
  12. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashukun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009). [CrossRef]
  13. N. Jacquinet-Husson, N. A. Scott, A. Chédin, L. Crépeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis, C. Boonne, N. Poulet-Crovisier, A. Barbe, M. Birk, L. R. Brown, C. Camy-Peyret, C. Claveau, K. Chance, N. Christidis, C. Clerbaux, P. F. Coheur, V. Dana, L. Daumont, M. R. De Backer-Barilly, G. Di Lonardo, J. M. Flaud, A. Goldman, A. Hamdouni, M. Hess, M. D. Hurley, D. Jacquemart, I. Kleiner, P. Köpke, J. Y. Mandin, S. Massie, S. Mikhailenko, V. Nemtchinov, A. Nikitin, D. Newnham, A. Perrin, V. I. Perevalov, S. Pinnock, L. Régalia-Jarlot, C. P. Rinsland, A. Rublev, F. Schreier, L. Schult, K. M. Smith, S. A. Tashkun, J. L. Teffo, R. A. Toth, V. G. Tyuterev, J. Vander Auwera, P. Varanasi, and G. Wagner, “The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies,” J. Quant. Spectrosc. Radiat. Transf. 109(6), 1043–1059 (2008). [CrossRef]
  14. J. L. Hall and J. A. Magyar, “High resolution saturated absorption studies of methane and some methyl-halides,” in High-Resolution Laser Spectroscopy, K. Shimoda ed. (Springer-Verlag, Berlin, 1976).
  15. A. Amy-Klein, H. Vigué, and C. Chardonnet, “Absolute frequency measurement of 12CO2 laser lines with a femtosecond laser comb and new determination of the 12CO2 molecular constants and frequency grid,” J. Mol. Spectrosc. 228(1), 206–212 (2004). [CrossRef]
  16. A. G. Maki and J. S. Wells, “New wavenumber calibration tables from heterodyne frequency measurements,” J. Res. Natl. Inst. Stand. Technol. 97, 409–470 (1992).
  17. T. George, W. Urban, and A. Le Floch, “Improved mass-independent Dunham parameters for the ground state of CO and calibration frequencies for the fundamental band,” J. Mol. Spectrosc. 165(2), 500–505 (1994). [CrossRef]
  18. G. Magerl, J. M. Frey, W. A. Kreiner, and T. Oka, “Inverse Lamb dip spectroscopy using microwave modulation sidebands of CO2 laser lines,” Appl. Phys. Lett. 42(8), 656–658 (1983). [CrossRef]
  19. B. Meyer, S. Saupe, M. H. Wappelhorst, T. George, F. Kühnemann, M. Schneider, M. Havenith, W. Urban, and J. Legrand, “CO laser side-band spectrometer: Sub-Doppler heterodyne frequency measurements around 5 μm,” Appl. Phys. B 61, 169–173 (1995). [CrossRef]
  20. J. T. Remillard, D. Uy, W. H. Weber, F. Capasso, C. Gmachl, A. L. Hutchinson, D. Sivco, J. Baillargeon, and A. Y. Cho, “Sub-Doppler resolution limited Lamb-dip spectroscopy of NO with a quantum cascade distributed feedback laser,” Opt. Express 7(7), 243–248 (2000). [CrossRef] [PubMed]
  21. E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett. 26(18), 1430–1432 (2001). [CrossRef] [PubMed]
  22. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88(6), 061101 (2006). [CrossRef]
  23. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000). [CrossRef] [PubMed]
  24. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88(24), 241104 (2006). [CrossRef]
  25. T. J. Pinkert, D. Z. Kandula, C. Gohle, I. Barmes, J. Morgenweg, and K. S. E. Eikema, “Widely tunable extreme UV frequency comb generation,” Opt. Lett. 36(11), 2026–2028 (2011). [CrossRef] [PubMed]
  26. D. Mazzotti, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, and P. De Natale, “A comb-referenced difference-frequency spectrometer for cavity ring-down spectroscopy in the 4.5 μm region,” J. Opt. A, Pure Appl. Opt. 8(7), S490–S493 (2006). [CrossRef]
  27. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, “Absolute measurement of molecular transitions by a direct link to a comb generated around 3 μm,” Opt. Express 16(11), 8242–8249 (2008). [CrossRef] [PubMed]
  28. P. Maddaloni, P. Malara, E. De Tommasi, M. De Rosa, I. Ricciardi, G. Gagliardi, F. Tamassia, G. Di Lonardo, and P. De Natale, “Absolute measurement of the S(0) and S(1) lines in the electric quadrupole fundamental band of D2 around 3μm,” J. Chem. Phys. 133(15), 154317 (2010). [CrossRef] [PubMed]
  29. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett. 30(9), 997–999 (2005). [CrossRef] [PubMed]
  30. K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F. L. Hong, “The absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009). [CrossRef]
  31. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104(11), 110801 (2010). [CrossRef] [PubMed]
  32. M. Abe, K. Takahata, and H. Sasada, “Sub-Doppler resolution 3.4 microm spectrometer with an efficient difference-frequency-generation source,” Opt. Lett. 34(11), 1744–1746 (2009). [CrossRef] [PubMed]
  33. T. R. Schibli, K. Minoshima, F. L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004). [CrossRef] [PubMed]
  34. H. Inaba, Y. Daimon, F. L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006). [CrossRef] [PubMed]
  35. J. Ye and J. L. Hall, “Absorption detection at the quantum limit: Probing high-finesse cavities with modulation techniques,” in Cavity-enhanced spectroscopy, Experimental methods in the physical sciences vol. 40, R. D. van Zee and J. P. Looney ed. (Academic Press, San Diego, 2002).
  36. S. Okubo, H. Nakayama, and H. Sasada, “Hyperfine-resolved 3.4-μm spectroscopy of CH3I with a widely tunable frequency generation source and a cavity-enhanced cell: A case study of a local Coriolis interaction between the v1 = 1 and (v2, v6l) = (1, 22) states,” Phys. Rev. A 83(1), 012505 (2011). [CrossRef]
  37. Y. Nakajima, H. Inaba, F. L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008). [CrossRef]
  38. R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22(1), 4–8 (1969). [CrossRef]
  39. E. V. Baklanov, B. Ya. Dubetskii, V. M. Semibalamut, and E. A. Titov, “Transit width of a nonlinear power resonance in low-pressure gases,” Sov. J. Quantum Electron. 5(11), 1374–1375 (1975). [CrossRef]
  40. A. Pine, “Self-, N2, O2, H2, Ar, and He broadening in the ν3 band Q branch of CH4,” J. Chem. Phys. 97(2), 773–785 (1992). [CrossRef]
  41. L. Féjard, J. P. Champion, J. M. Jouvard, L. R. Brown, and A. S. Pine, “The Intensities of Methane in the 3-5 μm Region Revisited,” J. Mol. Spectrosc. 201, 83–94 (2000).
  42. P. S. Ering, D. A. Tyurikov, G. Kramer, and B. Lipphardt, “Measurement of the absolute frequency of the methane E-line at 88 THz,” Opt. Commun. 151(4-6), 229–234 (1998). [CrossRef]
  43. J. L. Hall and C. J. Bordé, “Shift and broadening of saturated absorption resonances due to curvature of the laser wave front,” Appl. Phys. Lett. 29(12), 788 (1976). [CrossRef]
  44. M. Takami, K. Uehara, and K. Shimoda, “Rotational transitions of CH4 in the v3 = 1 excited state observed by an infrared-microwave double resonance method,” Jpn. J. Appl. Phys. 12(6), 924–925 (1973). [CrossRef]
  45. R. F. Curl., “Infrared-radio frequency double resonance observations of pure rotational Q-branch transitions of methane,” J. Mol. Spectrosc. 48(1), 165–173 (1973). [CrossRef]
  46. R. F. Curl, T. Oka, and D. S. Smith, “The observation of a pure rotational Q-branch transition of methane by infrared-radio frequency double resonance,” J. Mol. Spectrosc. 46(3), 518–520 (1973). [CrossRef]
  47. C. J. Pursell and D. P. Weliky, “Pure rotational transitions in the v3 state of methane,” J. Mol. Spectrosc. 153(1-2), 303–306 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited