OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23958–23964

Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing

Shi-Ling Li, Peigao Han, Meng Shi, Yicun Yao, Bing Hu, Mingwei Wang, and Xiaonong Zhu  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 23958-23964 (2011)
http://dx.doi.org/10.1364/OE.19.023958


View Full Text Article

Enhanced HTML    Acrobat PDF (1737 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical waveguides were fabricated in neodymium-doped silicate glass by using a low-repetition-rate (1 kHz) femtosecond laser inscription. Two different types of waveguide structure are fabricated. In the first, guiding occurs in the focal spot. In the second, guiding occurs in the region between the two filaments. The near-field intensity distribution, propagation loss, index profile reconstruction, and calculation of the modal intensity distribution by the beam propagation method of these waveguides are presented. On the basis of near-field intensity distribution of the light guided through the waveguides and the propagation loss measurement, the optimum writing conditions such as the pulse energy and scan velocity were determined. The waveguide written with 2.2 µJ pulse energy and 50 µm/s scan velocity shows strong guidance at 632.8 nm, with an index contrast of 7 × 10−4 and a propagation loss of ~0.8 dB/cm.

© 2011 OSA

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.3380) Materials : Laser materials
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Laser Microfabrication

History
Original Manuscript: August 8, 2011
Revised Manuscript: October 10, 2011
Manuscript Accepted: October 13, 2011
Published: November 10, 2011

Citation
Shi-Ling Li, Peigao Han, Meng Shi, Yicun Yao, Bing Hu, Mingwei Wang, and Xiaonong Zhu, "Low-loss channel optical waveguide fabrication in Nd3+-doped silicate glasses by femtosecond laser direct writing," Opt. Express 19, 23958-23964 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-23958


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Au, D. Kopf, F. Morier-Genoud, M. Moser, and U. Keller, “60-fs pulses from a diode-pumped Nd:glass laser,” Opt. Lett.22(5), 307–309 (1997). [CrossRef] [PubMed]
  2. A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “80-fs Nd:silicate glass laser pumped by a single-mode 200-mW diode,” Opt. Express18(10), 10098–10103 (2010). [CrossRef] [PubMed]
  3. F. Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007). [CrossRef]
  4. Y. L. Lee, T. J. Eom, W. Shin, B.-A. Yu, D.-K. Ko, W.-K. Kim, and H.-Y. Lee, “Characteristics of a multi-mode interference device based on Ti:LiNbO3 channel waveguide,” Opt. Express17(13), 10718–10724 (2009). [CrossRef] [PubMed]
  5. T. T. Fernandez, S. M. Eaton, G. Della Valle, R. M. Vazquez, M. Irannejad, G. Jose, A. Jha, G. Cerullo, R. Osellame, and P. Laporta, “Femtosecond laser written optical waveguide amplifier in phospho-tellurite glass,” Opt. Express18(19), 20289–20297 (2010). [CrossRef] [PubMed]
  6. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]
  7. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express18(24), 24994–24999 (2010). [CrossRef] [PubMed]
  8. L. P. Shi, T. C. Chong, Z. Zhuo, W. X. Hou, and P. F. Hu, “Properties of ion exchanged planar and channel optical waveguides fabricated in Cu doped KTiOPO4 substrates,” Appl. Phys. Lett.71(19), 2737–2739 (1997). [CrossRef]
  9. S.-L. Li, “Optical waveguides in LiNbO3 and stoichiometric LiNbO3 crystals by proton exchange,” Sci. China Ser. G51(10), 1479–1488 (2008). [CrossRef]
  10. F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q. M. Lu, C. E. Ruter, and D. Kip, “Optical channel waveguides in Nd: YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett.88(7), 071123 (2006). [CrossRef]
  11. S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D. Y. Shen, H. J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO(3) formed by MeV carbon ion implantation at low doses,” Opt. Express12(5), 747–752 (2004). [CrossRef] [PubMed]
  12. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett.88(11), 111109 (2006). [CrossRef]
  13. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, “In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett.26(1), 19–21 (2001). [CrossRef] [PubMed]
  14. M. Ams, G. D. Marshall, and M. J. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express14(26), 13158–13163 (2006). [CrossRef] [PubMed]
  15. J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process.86(2), 165–170 (2005). [CrossRef]
  16. M. Kumatoriya, M. Nakbayashi, M. Sakakura, Y. Shimotsuma, K. Miura, T. Fujii, and K. Hirao, “Optical Properties of a Waveguide Written Inside a LiTaO3 Crystal by Irradiation with Focused Femtosecond Laser Pulses,” Opt. Rev.18(1), 166–170 (2011). [CrossRef]
  17. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett.35(7), 916–918 (2010). [CrossRef] [PubMed]
  18. S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett.92(8), 081105 (2008). [CrossRef]
  19. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009). [CrossRef]
  20. I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive Index profile from the measured near-field intensity,” J. Lightwave Technol.14(3), 423–428 (1996). [CrossRef]
  21. X. Liu, S. Qu, Y. Tan, C. Zhang, and F. Chen, “Buried channel waveguides in neodymium-doped KGd(WO4)2 fabricated by low-repetition-rate femtosecond laser writing,” Appl. Phys. B103(1), 145–149 (2011). [CrossRef]
  22. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett.17(5), 329–330 (1992). [CrossRef] [PubMed]
  23. F. Chen, L. Wang, Y. Jiang, X. L. Wang, K. M. Wang, G. Fu, Q. M. Lu, C. E. Ruter, and D. Kip, “Optical channel waveguides in Nd: YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett.88(7), 071123 (2006). [CrossRef]
  24. J. A. Dharmadhikari, A. K. Dharmadhikari, A. Bhatnagar, A. Mallik, P. C. Singh, R. K. Dhaman, K. Chalapathi, and D. Mathur, “Writing low-loss waveguides in borosilicate (BK7) glass with a low-repetition-rate femtosecond laser,” Opt. Commun.284(2), 630–634 (2011). [CrossRef]
  25. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.71(7), 882–884 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited