OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23965–23980

Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers

Kristian Rymann Hansen, Thomas Tanggaard Alkeskjold, Jes Broeng, and Jesper Lægsgaard  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 23965-23980 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2044 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the effect of temperature gradients in high-power Yb-doped fiber amplifiers by a numerical beam propagation model, which takes thermal effects into account in a self-consistent way. The thermally induced change in the refractive index of the fiber leads to a thermal lensing effect, which decreases the effective mode area. Furthermore, it is demonstrated that the thermal lensing effect may lead to effective multi-mode behavior, even in single-mode designs, which could possibly lead to degradation of the output beam quality.

© 2011 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 5, 2011
Revised Manuscript: September 19, 2011
Manuscript Accepted: October 13, 2011
Published: November 10, 2011

Kristian Rymann Hansen, Thomas Tanggaard Alkeskjold, Jes Broeng, and Jesper Lægsgaard, "Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers," Opt. Express 19, 23965-23980 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004). [CrossRef] [PubMed]
  2. D. Gapontsev, “6 kW CW single mode Ytterbium fiber laser in all-fiber format,” in Proc. Solid State and Diode Laser Technology Review (2008).
  3. J. Li, K. Duan, Y. Wang, X. Cao, W. Zhao, Y. Guo, and X. Lin, “Theoretical analysis of the heat dissipation mechanism in Yb3+-doped double-clad fiber lasers,” J. Mod. Opt. 55, 459–471 (2008). [CrossRef]
  4. J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Perschel, V. Guyenot, and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express 11, 2982–2990 (2003). [CrossRef] [PubMed]
  5. S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14, 6091–6097 (2006). [CrossRef] [PubMed]
  6. J. Limpert, F. Röser, D. N. Schimpf, E. Seise, T. Eidam, S. Hädrich, J. Rothhardt, C. J. Misas, and A. Tünnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser Systems: Challenges, Design, and Experiment,” IEEE J. Sel. Topics Quantum Electron. 15, 159–169 (2009). [CrossRef]
  7. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010). [CrossRef] [PubMed]
  8. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Opt. Lett. 36, 689–691 (2011). [CrossRef] [PubMed]
  9. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218–13224 (2011). [CrossRef] [PubMed]
  10. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19, 3258–3271 (2011). [CrossRef] [PubMed]
  11. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19, 10180–10192 (2011). [CrossRef] [PubMed]
  12. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739–1741 (2004). [CrossRef] [PubMed]
  13. R. W. Boyd, Nonlinear Optics, 3rd. ed. (Elsevier2008).
  14. P. W. Milonni and J. H. Eberly, Lasers (John Wiley & Sons1988).
  15. D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136, A954–A957 (1964). [CrossRef]
  16. G. R. Hadley, “Transparent boundary condition for beam propagation,” Opt. Lett. 16, 624–626 (1991). [CrossRef] [PubMed]
  17. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal (Cambridge University Press1989).
  18. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited