OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 23981–23988

Broadly tunable L-band multiwavelength BEFL utilizing nonlinear amplified loop mirror filter

M. H. Al-Mansoori and M. A. Mahdi  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 23981-23988 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1546 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a widely tunable L-band multiwavelength Brillouin-erbium fiber laser utilizing a nonlinear amplified fiber loop mirror filter (AFLMF). By manipulating polarization controllers placed in the fiber loop, the erbium peak gain spectrum is able to be shifted. The nonlinear AFLMF induces wavelength-dependent cavity loss and serves as an amplitude equalizer. In addition, it provides flexibility on controlling the amount of light reflected and transmitted into and out of the laser’s cavity. By utilizing 100 mW 1480 nm pump and 1.1 mW Brillouin pump power, an average of 24 stable output channels are generated by the proposed structure that could all be tuned over the whole L-band window from 1570 nm to 1610 nm.

© 2011 OSA

OCIS Codes
(060.2410) Fiber optics and optical communications : Fibers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 8, 2011
Revised Manuscript: September 21, 2011
Manuscript Accepted: October 27, 2011
Published: November 10, 2011

M. H. Al-Mansoori and M. A. Mahdi, "Broadly tunable L-band multiwavelength BEFL utilizing nonlinear amplified loop mirror filter," Opt. Express 19, 23981-23988 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. G. Han and S. B. Lee, “Flexibly tunable multiwavelength erbium-doped fiber laser based on four-wave mixing effect in dispersion-shifted fibers,” Opt. Express 13(25), 10134–10139 (2005). [CrossRef] [PubMed]
  2. Y. G. Han, T. V. A. Tran, and S. B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber,” Opt. Lett. 31(6), 697–699 (2006). [CrossRef] [PubMed]
  3. X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, L. Edward, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17(8), 1626–1628 (2005). [CrossRef]
  4. W. Zhuyuan, C. Yiping, Y. Binfeng, and L. Changgui, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett. 17(10), 2044–2046 (2005). [CrossRef]
  5. X. Dong, P. Shum, N. Q. Ngo, and C. C. Chan, “Multiwavelength Raman fiber laser with a continuously-tunable spacing,” Opt. Express 14(8), 3288–3293 (2006). [CrossRef] [PubMed]
  6. S. A. Babin, D. V. Churkin, S. I. Kablukov, M. A. Rybakov, and A. A. Vlasov, “All-fiber widely tunable Raman fiber laser with controlled output spectrum,” Opt. Express 15(13), 8438–8443 (2007). [CrossRef] [PubMed]
  7. R. A. Sammut and S. J. Garth, “Multiple-frequency generation on single-mode optical fibers,” J. Opt. Soc. Am. B 6(9), 1732–1735 (1989). [CrossRef]
  8. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16(6), 393–395 (1991). [CrossRef] [PubMed]
  9. J. C. Yong, L. Thevenaz, and B. Y. Kim, “Brillouin fiber laser pumped by a DFB laser diode,” J. Lightwave Technol. 21(2), 546–554 (2003). [CrossRef]
  10. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798 channel Rayleigh assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001). [CrossRef]
  11. A. K. Zamzuri, M. A. Mahdi, A. Ahmad, M. I. Md Ali, and M. H. Al-Mansoori, “Flat amplitude multiwavelength Brillouin-Raman comb fiber laser in Rayleigh-scattering-enhanced linear cavity,” Opt. Express 15, 3000–3005 (2007).
  12. Y. G. Liu and D. Wang, “Wavelength tunable and amplitude-equilibrium dual-wavelength lasing sources with dual-pass Raman/Brillouin amplification configuration,” Opt. Express 16(6), 3583–3588 (2008). [CrossRef] [PubMed]
  13. G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEE Photon. Technol. Lett. 8(11), 1465–1467 (1996). [CrossRef]
  14. N. S. Kim, “Multiwavelength operation of EDFA-enhanced Brillouin/erbium fiber lasers,” Electron. Lett. 34(7), 673–675 (1998). [CrossRef]
  15. D. S. Lim, H. K. Lee, K. H. Kim, S. B. Kang, J. T. Ahn, and M. Y. Jeon, “Generation of multiorder Stokes and anti-Stokes lines in a Brillouin erbium-fiber laser with a Sagnac loop mirror,” Opt. Lett. 23(21), 1671–1673 (1998). [CrossRef] [PubMed]
  16. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009). [CrossRef]
  17. D. Y. Stepanov and G. J. Cowle, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1049–1057 (1997). [CrossRef]
  18. G. J. Cowle, D. Y. Stepanov, and Y. T. Chieng, “Brillouin/erbium fiber lasers,” J. Lightwave Technol. 15(7), 1198–1204 (1997). [CrossRef]
  19. Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, “Tunable multiwavelength Brillouin-Erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter,” IEEE Photon. Technol. Lett. 16(9), 2015–2017 (2004). [CrossRef]
  20. Z. Zhang, L. Zhan, and Y. Xia, “Tunable self-seeded multiwavelength Brillouin-Erbium fiber laser with enhanced power efficiency,” Opt. Express 15(15), 9731–9736 (2007). [CrossRef] [PubMed]
  21. Y. Huang, L. Zhan, J. H. Ji, S. Y. Luo, and Y. X. Xia, “Multiwavelength self-seeded Brillouin-erbium fiber laser with 45-nm tunable range,” Opt. Commun. 281, 452–456 (2008).
  22. M. H. Al-Mansoori, M. K. Abd-Rahman, F. R. Mahamd Adikan, and M. A. Mahdi, “Widely tunable linear cavity multiwavelength Brillouin-Erbium fiber lasers,” Opt. Express 13(9), 3471–3476 (2005). [CrossRef] [PubMed]
  23. M. H. Al-Mansoori and M. A. Mahdi, “Tunable range enhancement of Brillouin-erbium fiber laser utilizing Brillouin pump pre-amplification technique,” Opt. Express 16(11), 7649–7654 (2008). [CrossRef] [PubMed]
  24. M. H. Al-Mansoori, M. A. Mahdi, and M. Premaratne, “Novel multiwavelength L-band Brillouin-Erbium fiber laser utilizing double-pass Brillouin pump preamplified technique,” IEEE J. Sel. Top. Quantum Electron. 15(2), 415–421 (2009). [CrossRef]
  25. M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, S. Hitam, and M. Mokhtar, “Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser,” Opt. Express 17(8), 5944–5952 (2009). [CrossRef] [PubMed]
  26. M. Ajiya, M. A. Mahdi, and M. H. Al-Mansoori, “Widely tunable linear-cavity multiwavelength fiber laser with distributed Brillouin scattering,” Chin. Opt. Lett. 9, 1–3 (2011).
  27. B. Dong, D. P. Zhou, and L. Wei, “Tunable multiwavelength Brillouin-Erbium fiber laser by controlling self-lasing cavity modes' oscillation,” Opt. Fiber Technol. 16(1), 17–19 (2010). [CrossRef]
  28. K. Inoue, “Brillouin threshold in an optical fiber with bidirectional pump lights,” Opt. Commun. 120(1-2), 34–38 (1995). [CrossRef]
  29. M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, Y. G. Shee, S. Hitam, and M. Mokhtar, “Reduction of stimulated Brillouin scattering threshold through pump recycling technique,” Laser Phys. Lett. 6(7), 535–538 (2009). [CrossRef]
  30. H. A. Al-Asadi, M. H. Al-Mansoori, M. Ajiya, S. Hitam, M. I. Saripan, and M. A. Mahdi, “Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model,” Opt. Express 18(21), 22339–22347 (2010). [CrossRef] [PubMed]
  31. G. P. Agrawal, Application of Nonlinear Fiber Optics, 2nd ed., (Academic Press, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited