OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24037–24045

Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor

Lei Dong, Vincenzo Spagnolo, Rafał Lewicki, and Frank K. Tittel  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24037-24045 (2011)
http://dx.doi.org/10.1364/OE.19.024037


View Full Text Article

Enhanced HTML    Acrobat PDF (1220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Geometrical parameters of micro-resonator for a quartz enhanced photoacoustic spectroscopy sensor are optimized to perform sensitive and background-free spectroscopic measurements using mid-IR quantum cascade laser (QCL) excitation sources. Such an optimized configuration is applied to nitric oxide (NO) detection at 1900.08 cm−1 (5.26 µm) with a widely tunable, mode-hop-free external cavity QCL. For a selected NO absorption line that is free from H2O and CO2 interference, a NO detection sensitivity of 4.9 parts per billion by volume is achieved with a 1-s averaging time and 66 mW optical excitation power. This NO detection limit is determined at an optimal gas pressure of 210 Torr and 2.5% of water vapor concentration. Water is added to the analyzed mixture in order to improve the NO vibrational-translational relaxation process.

© 2011 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(280.3420) Remote sensing and sensors : Laser sensors
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:
Remote Sensing

History
Original Manuscript: September 7, 2011
Revised Manuscript: October 22, 2011
Manuscript Accepted: October 27, 2011
Published: November 10, 2011

Citation
Lei Dong, Vincenzo Spagnolo, Rafał Lewicki, and Frank K. Tittel, "Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor," Opt. Express 19, 24037-24045 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24037


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change (Wiley, New York, 1998).
  2. M. R. McCurdy, A. Sharafkhaneh, H. Abdel-Monem, J. Rojo, and F. K. Tittel, “Exhaled nitric oxide parameters and functional capacity in chronic obstructive pulmonary disease,” J Breath Res5(1), 016003 (2011). [CrossRef] [PubMed]
  3. T. H. Risby, “Current status of mid-infrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng.49(11), 111123 (2010). [CrossRef]
  4. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Opt. Lett.27(21), 1902–1904 (2002). [CrossRef] [PubMed]
  5. R. Lewicki, G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Carbon dioxide and ammonia detection using 2μm diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B87(1), 157–162 (2007). [CrossRef]
  6. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B100(3), 627–635 (2010). [CrossRef]
  7. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Compact portable QEPAS multi-gas sensor,” Proc. SPIE7945, 50Q–1 (2011).
  8. A. A. Kosterev, L. Dong, D. Thomazy, F. K. Tittel, and S. Overby, “QEPAS for chemical analysis of multi-component gas mixtures,” Appl. Phys. B101(3), 649–659 (2010). [CrossRef]
  9. V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B100(1), 125–130 (2010). [CrossRef]
  10. C. Bauer, U. Willer, and W. Schade, “Use of quantum cascade laser for detection of explosives: progress and challenges,” Opt. Eng.49(11), 111126 (2010). [CrossRef]
  11. L. S. Rothman, A. Barbe, C. D. Brenner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaudi, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN Molecular Spectroscopic Database: Edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transf.82(1-4), 5–44 (2003). [CrossRef]
  12. T. L. Cottrell and J. C. McCoubrey, Molecular Energy Transfer In Gases (Butterworths, London, 1961).
  13. R. D. Grober, J. Acimovic, J. Schuck, D. Hessman, P. J. Kindlemann, J. Hespanha, and A. S. Morse, “Fundamental limits to force detection using quartz tuning forks,” Rev. Sci. Instrum.71(7), 2776–2780 (2000). [CrossRef]
  14. A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing,” Rev. Sci. Instrum.76(4), 043105 (2005). [CrossRef]
  15. S. Gray, A. Liu, F. Xie, and C. E. Zah, “Detection of nitric oxide in air with a 5.2 μm distributed-feedback quantum cascade laser using quartz-enhanced photoacoustic spectroscopy,” Opt. Express18(22), 23353–23357 (2010). [CrossRef] [PubMed]
  16. R. Sarmiento, I. E. Santosa, S. T. Persijn, L. J. J. Laarhoven, and F. J. M. Harren, “Trace nitric oxide detection using CO-laser photoacoustic spectroscopy,” in Proceedings Forum Acusticum 2005, p.L139, Budapest (2005).
  17. A. A. Kosterev, Y. A. Bakhirkin, F. K. Tittel, S. Mcwhorter, and B. Ashcraft, “QEPAS methane sensor performance for humidified gases,” Appl. Phys. B92(1), 103–109 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited