OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24055–24060

Nanobeam photonic bandedge lasers

Sejeong Kim, Byeong-Hyeon Ahn, Ju-Young Kim, Kwang-Yong Jeong, Ki Soo Kim, and Yong-Hee Lee  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24055-24060 (2011)
http://dx.doi.org/10.1364/OE.19.024055


View Full Text Article

Enhanced HTML    Acrobat PDF (997 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate one-dimensional nanobeam photonic bandedge lasers with InGaAsP quantum wells at room temperature from the lowest dielectric band of photonic crystal nanobeam waveguides. The incident optical power at threshold is 0.6 mW (effectively ~18 μW). To confirm the lasing from the dielectric bandedge, the polarization and the photoluminescent spectra are taken from nanobeams of varying lattice constants. The observed shift of the lasing wavelength agrees well with the computational prediction.

© 2011 OSA

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 2, 2011
Revised Manuscript: October 17, 2011
Manuscript Accepted: October 28, 2011
Published: November 10, 2011

Citation
Sejeong Kim, Byeong-Hyeon Ahn, Ju-Young Kim, Kwang-Yong Jeong, Ki Soo Kim, and Yong-Hee Lee, "Nanobeam photonic bandedge lasers," Opt. Express 19, 24055-24060 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24055


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  2. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science305(5689), 1444–1447 (2004). [CrossRef] [PubMed]
  3. M.-K. Kim, J.-Y. Kim, J.-H. Kang, B.-H. Ahn, and Y.-H. Lee, “On-demand photonic crystal resonators,” Laser Photon. Rev.5(4), 479–495 (2011). [CrossRef]
  4. H. Altug, D. Englund, and J. Vŭcković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys.2(7), 484–488 (2006). [CrossRef]
  5. M.-K. Seo, J.-H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G. Park, and Y.-H. Lee, “Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition,” Opt. Express17(8), 6790–6798 (2009). [CrossRef] [PubMed]
  6. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007). [CrossRef]
  7. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett.96(11), 117401 (2006). [CrossRef] [PubMed]
  8. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature419(6907), 594–597 (2002). [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432(7014), 200–203 (2004). [CrossRef] [PubMed]
  10. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  11. H.-Y. Ryu, S.-H. Kwon, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett.80(19), 3476 (2002). [CrossRef]
  12. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “InP based 2-D photonic crystal on silicon: In-plane Bloch mode laser,” Appl. Phys. Lett.81(27), 5102–5104 (2002). [CrossRef]
  13. S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, Y.-H. Lee, and S.-B. Kim, “Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs,” Appl. Phys. Lett.83(19), 3870–3872 (2003). [CrossRef]
  14. J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett.39(6), 526–528 (2003). [CrossRef]
  15. S.-H. Kwon, S.-H. Kim, S.-K. Kim, Y.-H. Lee, and S. B. Kim, “Small, low-loss heterogeneous photonic bandedge laser,” Opt. Express12(22), 5356–5361 (2004). [CrossRef] [PubMed]
  16. M. Nomura, S. Iwamoto, A. Tandaechanurat, Y. Ota, N. Kumagai, and Y. Arakawa, “Photonic band-edge micro lasers with quantum dot gain,” Opt. Express17(2), 640–648 (2009). [CrossRef] [PubMed]
  17. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express16(15), 11095–11102 (2008). [CrossRef] [PubMed]
  18. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009). [CrossRef]
  19. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010). [CrossRef] [PubMed]
  20. M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lončar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett.98(11), 111117 (2011). [CrossRef]
  21. R. Ohta, Y. Ota, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, and Y. Arakawa, “Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot,” Appl. Phys. Lett.98(17), 173104 (2011). [CrossRef]
  22. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009). [CrossRef] [PubMed]
  23. A. H. Safavi-Naeini, T. P. M Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011). [CrossRef] [PubMed]
  24. B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010). [CrossRef] [PubMed]
  25. Y. Zhang, M. Khan, Y. Huang, J. H. Ryou, P. B. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett.97(5), 051104 (2010). [CrossRef]
  26. Y. Halioua, A. Bazin, P. Monnier, T. J. Karle, G. Roelkens, I. Sagnes, R. Raj, and F. Raineri, “Hybrid III-V semiconductor/silicon nanolaser,” Opt. Express19(10), 9221–9231 (2011). [CrossRef] [PubMed]
  27. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vučković, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express18(9), 8781–8789 (2010). [CrossRef] [PubMed]
  28. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett.10(1), 99–104 (2010). [CrossRef] [PubMed]
  29. M. M. Murshidy, A. M. Adawi, P. W. Fry, and D. G. Lidzey, “A one-dimensional photonic-crystal nanocavity incorporating a fluorescent molecular dye,” Appl. Phys. Lett.97(15), 153303 (2010). [CrossRef]
  30. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010). [CrossRef] [PubMed]
  31. T. Baba and D. Sano, “Low-threshold lasing and Purcell effect in microdisk lasers at room temperature,” IEEE J. Sel. Top. Quant.9(5), 1340–1346 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited