OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24061–24066

Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy

Hein L. Leertouwer, Bodo D. Wilts, and Doekele G. Stavenga  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24061-24066 (2011)
http://dx.doi.org/10.1364/OE.19.024061


View Full Text Article

Enhanced HTML    Acrobat PDF (890 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using Jamin-Lebedeff interference microscopy, we measured the wavelength dependence of the refractive index of butterfly wing scales and bird feathers. The refractive index values of the glass scales of the butterfly Graphium sarpedon are, at wavelengths 400, 500 and 600 nm, 1.572, 1.552 and 1.541, and those of the feather barbules of the white goose Anas anas domestica are 1.569, 1.556 and 1.548, respectively. The dispersion spectra of the chitin in the butterfly scales and the keratin in the bird barbules are well described by the Cauchy equation n(λ) = A + B/λ2, with A = 1.517 and B = 8.80·103 nm2 for the butterfly chitin and A = 1.532 and B = 5.89·103 nm2 for the bird keratin.

© 2011 OSA

OCIS Codes
(160.5320) Materials : Photorefractive materials
(170.1420) Medical optics and biotechnology : Biology
(180.0180) Microscopy : Microscopy
(160.1435) Materials : Biomaterials

ToC Category:
Materials

History
Original Manuscript: September 7, 2011
Revised Manuscript: November 4, 2011
Manuscript Accepted: November 4, 2011
Published: November 10, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Hein L. Leertouwer, Bodo D. Wilts, and Doekele G. Stavenga, "Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy," Opt. Express 19, 24061-24066 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24061


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. F. Land, “The physics and biology of animal reflectors,” Prog. Biophys. Mol. Biol.24, 75–106 (1972). [CrossRef] [PubMed]
  2. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds and moths,” Chem. Rev.99(7), 1935–1962 (1999). [CrossRef] [PubMed]
  3. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003). [CrossRef] [PubMed]
  4. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).
  5. L. P. Biró and J.-P. Vigneron, “Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration,” Laser Photon Rev4, 1–26 (2011).
  6. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys.71(7), 076401 (2008). [CrossRef]
  7. A. L. Ingram and A. R. Parker, “A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (the Natural History Museum, London from 1961 to 1990),” Philos. Trans. R. Soc. Lond. B Biol. Sci.363(1502), 2465–2480 (2008). [CrossRef] [PubMed]
  8. R. O. Prum, “Anatomy, physics, and evolution of avian structural colors,” in Bird Coloration, Vol. I, Mechanisms and Measurements (eds. G. E. Hill, K. J. McGraw), pp 295–353. (University Press, 2006).
  9. E. Nakamura, S. Yoshioka, and S. Kinoshita, “Structural color of rock dove's neck feather,” J. Phys. Soc. Jpn.77(12), 124801 (2008). [CrossRef]
  10. M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. C. Crum, M. H. Ellisman, M. L. Auer, and R. O. Prum, “Electron tomography, 3D Fourier analysis and color prediction of a 3D bio-photonic nanostructure,” J. R. Soc. Interface6(Suppl. 2), S213–S220 (2009). [PubMed]
  11. M. N. V. Ravi Kumar, “A review of chitin and chitosan applications,” React. Funct. Polym.46(1), 1–27 (2000). [CrossRef]
  12. A. H. Brush, “Evolving a protofeather and feather diversity,” Am. Zool.40(4), 631–639 (2000). [CrossRef]
  13. C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem.31(3), 321–354 (1927). [CrossRef]
  14. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999). [CrossRef]
  15. D. G. Stavenga, M. A. Giraldo, and H. L. Leertouwer, “Butterfly wing colors: glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane,” J. Exp. Biol.213(10), 1731–1739 (2010). [CrossRef] [PubMed]
  16. D. G. Stavenga, A. Mashushita, K. Arikawa, H. L. Leertouwer, and B. D. Wilts, “Glass scales on the wing of the swordtail butterfly Graphium sarpedon act as thin film polarizing reflectors,” submitted (2012).
  17. C. W. Mason, “Structural colors in feathers. I,” J. Phys. Chem.27(3), 201–251 (1923). [CrossRef]
  18. C. W. Mason, “Structural colors in feathers. II,” J. Phys. Chem.27(5), 401–448 (1923). [CrossRef]
  19. W. J. Schmidt, “Wie entstehen die Schillerfarben der Federn?” Naturwiss.39(14), 313–318 (1952). [CrossRef]
  20. D. J. Brink and N. G. van der Berg, “Structural colours from the feathers of the bird Bostrychia hagedash,” J. Phys. D Appl. Phys.37(5), 813–818 (2004). [CrossRef]
  21. M. Françon, Progress in Microscopy (Pergamon Press, 1961).
  22. E. Rutschke, “Die submikroskopische Struktur schillernder Federn von Entenvögeln,” Z. Zellforsch. Mikrosk. Anat.73(3), 432–443 (1966). [CrossRef] [PubMed]
  23. S. Yoshioka and S. Kinoshita, “Direct determination of the refractive index of natural multilayer systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.83(5), 051917 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited