OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24078–24089

Real-time, subsecond, multicomponent breath analysis by Optical Parametric Oscillator based Off-Axis Integrated Cavity Output Spectroscopy

Denis D. Arslanov, Koen Swinkels, Simona M. Cristescu, and Frans J. M. Harren  »View Author Affiliations

Optics Express, Vol. 19, Issue 24, pp. 24078-24089 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1219 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Breath analysis is an attractive field of research, due to its high potential for non-invasive medical diagnostics. Among others, laser-based absorption spectroscopy is an excellent method for the detection of gases in exhaled breath, because it can combine a high sensitivity with a good selectivity, and a high temporal resolution. Here, we use a fast-scanning continuous wave, singly-resonant Optical Parametric Oscillator (wavelength range between 3 and 4 μm, linewidth 40 MHz, output power > 1 W, scanning speed 100 THz/s) with Off-Axis Integrated Cavity Output Spectroscopy for rapid and sensitive trace gas detection. Real-time, low- ppbv detection of ethane is demonstrated in exhaled human breath during free exhalations. Also, simultaneous, real-time multi-component gas detection of ethane, methane and water was performed in exhaled breath using a wide spectral coverage over 17 cm−1 in 1 second. Furthermore, real-time detection of acetone, a molecule with a wide absorption spectrum, was shown in exhaled breath, with a sub-second time resolution (0.4 s).

© 2011 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(190.4975) Nonlinear optics : Parametric processes

ToC Category:

Original Manuscript: September 8, 2011
Revised Manuscript: October 15, 2011
Manuscript Accepted: October 30, 2011
Published: November 10, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Denis D. Arslanov, Koen Swinkels, Simona M. Cristescu, and Frans J. M. Harren, "Real-time, subsecond, multicomponent breath analysis by Optical Parametric Oscillator based Off-Axis Integrated Cavity Output Spectroscopy," Opt. Express 19, 24078-24089 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Risby and F. K. Tittel, “Current status of midinfrared quantum and interband cascade lasers for clinical breath analysis,” Opt. Eng. 49(11), 111123 (2010). [CrossRef]
  2. W. Miekisch, J. K. Schubert, and G. F. E. Noeldge-Schomburg, “Diagnostic potential of breath analysis--focus on volatile organic compounds,” Clin. Chim. Acta 347(1-2), 25–39 (2004). [CrossRef] [PubMed]
  3. T. H. Risby, “Volatile organic compounds as markers in normal and diseased states,” in NATO ASI Series, Disease markers in exhaled breath: basic mechanisms and clinical applications, N. Marczin and M. H. Yacoub, eds. (IOS, 2002), pp.113–122.
  4. T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85(2-3), 421–426 (2006). [CrossRef]
  5. C. Wang and P. Sahay, “Breath Analysis Using Laser Spectroscopic Techniques Breath Biomarkers, Spectral Fingerprints, and Detection Limits,” Sensors (Basel Switzerland) 9(10), 8230–8262 (2009). [CrossRef]
  6. B. Buszewski, M. Kesy, T. Ligor, and A. Amann, “Human exhaled air analytics: biomarkers of diseases,” Biomed. Chromatogr. 21(6), 553–566 (2007). [CrossRef] [PubMed]
  7. A. Artlich, B. Jónsson, M. Bhiladvala, P. A. Lönnqvist, and L. E. Gustafsson, “Single breath analysis of endogenous nitric oxide in the newborn,” Biol. Neonate 79(1), 21–26 (2001). [CrossRef] [PubMed]
  8. V. H. Tran, P. C. Hiang, M. Thurston, P. Jackson, C. Lewis, D. Yates, G. Bell, and P. S. Thomas, “Breath analysis of lung cancer patients using an electronic nose detection system,” IEEE Sens. J. 10(9), 1514–1518 (2010). [CrossRef]
  9. G. Berden and R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley, 2009).
  10. S. M. Cristescu, S. T. Persijn, S. te Lintel Hekkert, and F. J. M. Harren, “Laser-based systems for trace gas detection in life sciences,” Appl. Phys. B 92(3), 343–349 (2008). [CrossRef]
  11. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 μm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009). [CrossRef] [PubMed]
  12. V. Spagnolo, A. A. Kosterev, L. Dong, R. Lewicki, and F. K. Tittel, “NO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum cascade laser,” Appl. Phys. B 100(1), 125–130 (2010). [CrossRef]
  13. D. D. Arslanov, S. M. Cristescu, and F. J. M. Harren, “Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing,” Opt. Lett. 35(19), 3300–3302 (2010). [CrossRef] [PubMed]
  14. B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512(1-3), 1–20 (2011). [CrossRef]
  15. E. R. Crosson, K. N. Ricci, B. A. Richman, F. C. Chilese, T. G. Owano, R. A. Provencal, M. W. Todd, J. Glasser, A. A. Kachanov, B. A. Paldus, T. G. Spence, and R. N. Zare, “Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath,” Anal. Chem. 74(9), 2003–2007 (2002). [CrossRef] [PubMed]
  16. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O'Keefe, “Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL,” Appl. Phys. B 81(5), 705–710 (2005). [CrossRef]
  17. J. Manne, O. Sukhorukov, W. Jäger, and J. Tulip, “Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath,” Appl. Opt. 45(36), 9230–9237 (2006). [CrossRef] [PubMed]
  18. I. Ventrillard-Courtillot, T. Gonthiez, C. Clerici, and D. Romanini, “Multispecies breath analysis faster than a single respiratory cycle by optical-feedback cavity-enhanced absorption spectroscopy,” J. Biomed. Opt. 14(6), 064026 (2009). [CrossRef] [PubMed]
  19. H. Dahnke, D. Kleine, P. Hering, and M. Murtz, “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971–975 (2001).
  20. D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85(2-3), 437–443 (2006). [CrossRef]
  21. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16(4), 2387–2397 (2008). [CrossRef] [PubMed]
  22. J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, S. R. Sama, and D. K. Milton, “Clinical study of multiple breath biomarkers of asthma and COPD (NO, CO2, CO and N2O) by infrared laser spectroscopy,” J. Breath Res. 5(3), 037108 (2011). [CrossRef] [PubMed]
  23. G. N. Rao and A. Karpf, “External cavity tunable quantum cascade lasers and their applications to trace gas monitoring,” Appl. Opt. 50(4), A100–A115 (2011). [CrossRef] [PubMed]
  24. K. R. Parameswaran, D. I. Rosen, M. G. Allen, A. M. Ganz, and T. H. Risby, “Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements,” Appl. Opt. 48(4), B73–B79 (2009). [CrossRef] [PubMed]
  25. S. Persijn, F. Harren, and A. van der Veen, “Quantitative gas measurements using a versatile OPO-based cavity ringdown spectrometer and the comparison with spectroscopic databases,” Appl. Phys. B 100(2), 383–390 (2010). [CrossRef]
  26. A. K. Y. Ngai, S. T. Persijn, G. von Basum, and F. J. M. Harren, “Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection,” Appl. Phys. B 85(2-3), 173–180 (2006). [CrossRef]
  27. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40(27), 4904–4910 (2001). [CrossRef] [PubMed]
  28. G. S. Engel, W. S. Drisdell, F. N. Keutsch, E. J. Moyer, and J. G. Anderson, “Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 μm: new sensitivity limits for absorption measurements in passive optical cavities,” Appl. Opt. 45(36), 9221–9229 (2006). [CrossRef] [PubMed]
  29. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 110(9-10), 533–572 (2009). [CrossRef]
  30. T. T. Groot, P. M. van Bodegom, F. J. M. Harren, and H. A. J. Meijer, “Quantification of methane oxidation in the rice rhizosphere 13C-labelled methane,” Biogeochemistry 64(3), 355–372 (2003). [CrossRef]
  31. D. D. Arslanov, M. Spunei, A. K. Y. Ngai, S. M. Cristescu, I. D. Lindsay, S. T. Persijn, K. J. Boller, and F. J. M. Harren, “Rapid and sensitive trace gas detection with continuous wave optical parametric oscillator-based wavelength modulation spectroscopy,” Appl. Phys. B 103(1), 223–228 (2011). [CrossRef]
  32. A. K. Y. Ngai, S. T. Persijn, I. D. Lindsay, A. A. Kosterev, P. Groß, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89(1), 123–128 (2007). [CrossRef]
  33. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, “Gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc. 58(12), 1452–1461 (2004). [CrossRef] [PubMed]
  34. J. King, A. Kupferthaler, K. Unterkofler, H. Koc, S. Teschl, G. Teschl, W. Miekisch, J. Schubert, H. Hinterhuber, and A. Amann, “Isoprene and acetone concentration profiles during exercise on an ergometer,” J. Breath Res. 3(2), 027006 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited