OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24109–24114

Diffraction cancellation over multiple wavelengths in photorefractive dipolar glasses

J. Parravicini, F. Di Mei, C. Conti, A. J. Agranat, and E. DelRe  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24109-24114 (2011)
http://dx.doi.org/10.1364/OE.19.024109


View Full Text Article

Enhanced HTML    Acrobat PDF (1029 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the simultaneous diffraction cancellation for beams of different wavelengths in out-of-equilibrium dipolar glass. The effect is supported by the photorefractive diffusive nonlinearity and scale-free optics, and can find application in imaging and microscopy.

© 2011 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(160.2260) Materials : Ferroelectrics
(160.5320) Materials : Photorefractive materials
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 16, 2011
Revised Manuscript: October 13, 2011
Manuscript Accepted: October 14, 2011
Published: November 10, 2011

Citation
J. Parravicini, F. Di Mei, C. Conti, A. J. Agranat, and E. DelRe, "Diffraction cancellation over multiple wavelengths in photorefractive dipolar glasses," Opt. Express 19, 24109-24114 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24109


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photon.5, 39–42 (2011). [CrossRef]
  2. C. Conti, A. J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and three-dimensional localization in disordered ferroelectrics: towards metamaterials of nonlinear origin,” Phys. Rev. A84, 043809 (2011). [CrossRef]
  3. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974).
  4. A. Yariv, Quantum Electronics, 3rd Edition (Wiley, New York, 1989).
  5. S. Trillo and W. Torruellas (eds.), Spatial solitons (Springer-Verlag, Berlin, 2001).
  6. D. Kip, C. Anastassiou, E. Eugenieva, D. Christodoulides, and M. Segev, “Transmission of images through highly nonlinear media by gradient-index lenses formed by incoherent solitons,” Opt. Lett.26, 524–526 (2001). [CrossRef]
  7. J. K. Yang, P. Zhang, M. Yoshihara, Y. Hu, and Z. G. Chen, “Image transmission using stable solitons of arbitrary shapes in photonic lattices,” Opt. Lett.36, 772–774 (2011) [CrossRef] [PubMed]
  8. O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys.5, 665–668 (2009) [CrossRef]
  9. D. V. Dylov and J. W. Fleischer, “Nonlinear self-filtering of noisy images via dynamical stochastic resonance,” Nat. Photon.4, 323–328 (2010) [CrossRef]
  10. D. B. Murphy, Fundamentals of light microscopy and electronic imaging (Wiley, New York, 2001)
  11. B. Crosignani, E. DelRe, P. Di Porto, and A. Degasperis, “Self-focusing and self-trapping in unbiased centrosymmetric photorefractive media,” Opt. Lett.23, 912–914 (1998) [CrossRef]
  12. B. Crosignani, A. Degasperis, E. DelRe, P. Di Porto, and A. J. Agranat, “Nonlinear optical diffraction effects and solitons due to anisotropic charge-diffusion-based self-interaction,” Phys. Rev. Lett.82, 1664–1667 (1999) [CrossRef]
  13. E. DelRe, B. Crosignani, and P. Di Porto, “Photorefractive Solitons and Their Underlying Nonlocal Physics,” Prog. Optics53, 153–200 (2009) [CrossRef]
  14. G. Samara, “The relaxational properties of compositionally disordered ABO3 perovskites,” J. Phys.: Condens. Matter15, R367–R411 (2003) [CrossRef]
  15. A. A. Bokov and Z. -G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci41, 31–52 (2006) [CrossRef]
  16. P. Ben Ishai, A. J. Agranat, and Y. Feldman, “Confinement kinetics in a KTN : Cu crystal: Experiment and theory,” Phys. Rev. B73, 104104 (2006) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited