OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 19, Iss. 24 — Nov. 21, 2011
  • pp: 24129–24138

Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides

Ahmet E. Akosman, Mehmet Mutlu, Hamza Kurt, and Ekmel Ozbay  »View Author Affiliations


Optics Express, Vol. 19, Issue 24, pp. 24129-24138 (2011)
http://dx.doi.org/10.1364/OE.19.024129


View Full Text Article

Acrobat PDF (1520 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the operation of a compact wavelength de-multiplexer using cascaded single-mode photonic crystal waveguides utilizing the slow light regime. By altering the dielectric filling factors of each waveguide segment, we numerically and experimentally show that different frequencies are separated at different locations along the waveguide. In other words, the beams of different wavelengths are spatially dropped along the transverse to the propagation direction. We numerically verified the spatial shifts of certain wavelengths by using the two-dimensional finite-difference time-domain method. The presented design can be extended to de-multiplex more wavelengths by concatenating additional photonic crystal waveguides with different filling factors.

© 2011 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 27, 2011
Revised Manuscript: October 26, 2011
Manuscript Accepted: October 28, 2011
Published: November 10, 2011

Citation
Ahmet E. Akosman, Mehmet Mutlu, Hamza Kurt, and Ekmel Ozbay, "Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides," Opt. Express 19, 24129-24138 (2011)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-24-24129


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A, Pure Appl. Opt.1(5), L10–l13 (1999). [CrossRef]
  2. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol.19(12), 1970–1975 (2001). [CrossRef]
  3. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt.40(14), 2247–2252 (2001). [CrossRef] [PubMed]
  4. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express12(8), 1551–1561 (2004). [CrossRef] [PubMed]
  5. F. Van Laere, T. Stomeo, C. Cambournac, M. Ayre, R. Brenot, H. Benisty, G. Roelkens, T. F. Krauss, D. Van Thourhout, and R. Baets, “Nanophotonic polarization diversity demultiplexer chip,” J. Lightwave Technol.27(4), 417–425 (2009). [CrossRef]
  6. B. E. Nelson, M. Gerken, D. A. B. Miller, R. Piestun, C. C. Lin, and J. S. Harris, “Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting,” Opt. Lett.25(20), 1502–1504 (2000). [CrossRef] [PubMed]
  7. S. Kamei, K. Iemura, A. Kaneko, Y. Inoue, T. Shibata, H. Takahashi, and A. Sugita, “1.5%-Δ athermal arrayed-waveguide grating multi/demultiplexer with very low loss groove design,” IEEE Photon. Technol. Lett.17(3), 588–590 (2005). [CrossRef]
  8. M. Thorhauge, L. H. Frandsen, and P. I. Borel, “Efficient photonic crystal directional couplers,” Opt. Lett.28(17), 1525–1527 (2003). [CrossRef] [PubMed]
  9. M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express10(22), 1279–1284 (2002). [PubMed]
  10. S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron.38(1), 47–53 (2002). [CrossRef]
  11. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett.18(1), 226–228 (2006). [CrossRef]
  12. A. Rostami, F. Nazaria, H. Alipour Banaei, and A. Bahrami, “A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure,” Photonics Nanostruct. Fundam. Appl.8(1), 14–22 (2010). [CrossRef]
  13. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett.82(11), 1661–1663 (2003). [CrossRef]
  14. B.-S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science300(5625), 1537 (2003). [CrossRef] [PubMed]
  15. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express3(1), 4–11 (1998). [CrossRef] [PubMed]
  16. E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, C. Cuisin, E. Derouin, O. Drisse, G.-H. Duan, L. Legouézigou, O. Legouézigou, F. Pommereau, S. Golka, H. Heidrich, H. J. Hensel, and K. Janiak, “Compact wavelength monitoring by lateral outcoupling in wedged photonic crystal multimode waveguides,” Appl. Phys. Lett.86(10), 101107 (2005). [CrossRef]
  17. L. Martinelli, H. Benisty, O. Khayam, G. H. Duan, H. Heidrich, and K. Janiak, “Analysis and optimization of compact demultiplexer monitor based on photonic crystal waveguide,” J. Lightwave Technol.25(9), 2385–2394 (2007). [CrossRef]
  18. H. Benisty, C. Cambournac, F. Van Laere, and D. Van Thourhout, “Photonic-Crystal Demultiplexer With Improved Crosstalk by Second-Order Cavity Filtering,” J. Lightwave Technol.28(8), 1201–1208 (2010). [CrossRef]
  19. H. J. Kim, I. Park, B. H. O, S. G. Park, H. Lee, and S. G. Lee, “Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing,” Opt. Express12(23), 5625–5633 (2004). [CrossRef] [PubMed]
  20. N. Shahid, M. Amin, S. Naureen, M. Swillo, and S. Anand, “Junction-type photonic crystal waveguides for notch- and pass-band filtering,” Opt. Express19(21), 21074–21080 (2011). [CrossRef] [PubMed]
  21. F. S.-S. Chien, Y.-J. Hsu, W.-F. Hsieh, and S.-C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express12(6), 1119–1125 (2004). [CrossRef] [PubMed]
  22. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron.38(4), 915–917 (2002).
  23. A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with singlemode propagation in the photonic bandgap,” Electron. Lett.36(16), 1376–1378 (2000). [CrossRef]
  24. A. Taflove, Computational Electrodynamics—The Finite-Difference Time-Domain Method, (Artech House, Norwood, MA 2000).
  25. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited